论文标题

加权图表中的符号功率

Symbolic powers in weighted oriented graphs

论文作者

Mandal, Mousumi, Pradhan, Dipak Kumar

论文摘要

当非平凡权重的顶点是水槽和$ i(d)时,让$ d $是带有基础图$ g $的加权图形图,i(g)$分别是对应于$ d $ g和$ g的边缘理想。我们使用强顶点封面的概念对$ i(d)$的符号功能进行明确描述。我们表明,$ i(d)$和$ i(g)$的普通和象征性权力以类似的方式行事。我们为某些类别的加权图形图提供了符号功率的描述和$ i(d)$的waldschmidt常数。当$ d $是一个加权的奇数周期时,我们计算$ \ reg(i(d)^{(s)}/i(d)^s)$,并证明$ \ reg I(d)^{(s)} \ leq \ reg iq \ reg i(d)^s $,并显示出一个仅具有非trivial量的vertex时,则表现出了平等。

Let $D$ be a weighted oriented graph with the underlying graph $G$ when vertices with non-trivial weights are sinks and $I(D), I(G) $ be the edge ideals corresponding to $D$ and $G,$ respectively. We give explicit description of the symbolic powers of $I(D)$ using the concept of strong vertex covers. We show that the ordinary and symbolic powers of $I(D)$ and $I(G)$ behave in a similar way. We provide a description for symbolic powers and Waldschmidt constant of $I(D)$ for certain classes of weighted oriented graphs. When $D$ is a weighted oriented odd cycle we compute $\reg (I(D)^{(s)}/I(D)^s)$ and prove $\reg I(D)^{(s)}\leq\reg I(D)^s$ and show that equality holds when there is only one vertex with non-trivial weight.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源