论文标题

您只能看自己:无监督和未经训练的单图像脱雪神经网络

You Only Look Yourself: Unsupervised and Untrained Single Image Dehazing Neural Network

论文作者

Li, Boyun, Gou, Yuanbiao, Gu, Shuhang, Liu, Jerry Zitao, Zhou, Joey Tianyi, Peng, Xi

论文摘要

在本文中,我们研究了单个图像除尘中的两个具有挑战性且触不可及的问题,即,如何使深度学习实现图像去除,而无需在基础真相清洁图像(无监督)和图像收集(未经训练)上进行训练。无监督的神经网络将避免繁殖的繁重劳动型图像对,而未经训练的模型是一种``真实的''单图像脱掩的方法,它只能根据观察到的朦胧图像本身来消除雾兹,并且不使用额外的图像。在层散开的想法的启发下,我们提出了一种新颖的方法,称您仅查看自己(\ textbf {yoly}),这可能是最早的无监督和未经训练的神经网络之一。简而言之,Yoly采用三个共同的子网,将观察到的朦胧图像分为几个潜在层,\ textit {i.e。},场景辐射层,变速箱地图层和大气灯层。之后,这三层以自我监督的方式进一步构成朦胧的图像。得益于Yoly的无监督和未经训练的特征,我们的方法绕过了朦胧清洁对或大规模数据集的深层模型的常规训练范式,因此避免了劳动密集型数据收集和域转移问题。此外,由于其层分离机制,我们的方法还提供了有效的基于学习的雾化转移解决方案。广泛的实验表明,与四个数据库中的14种方法相比,我们方法在图像脱掩护中的表现有希望。

In this paper, we study two challenging and less-touched problems in single image dehazing, namely, how to make deep learning achieve image dehazing without training on the ground-truth clean image (unsupervised) and a image collection (untrained). An unsupervised neural network will avoid the intensive labor collection of hazy-clean image pairs, and an untrained model is a ``real'' single image dehazing approach which could remove haze based on only the observed hazy image itself and no extra images is used. Motivated by the layer disentanglement idea, we propose a novel method, called you only look yourself (\textbf{YOLY}) which could be one of the first unsupervised and untrained neural networks for image dehazing. In brief, YOLY employs three jointly subnetworks to separate the observed hazy image into several latent layers, \textit{i.e.}, scene radiance layer, transmission map layer, and atmospheric light layer. After that, these three layers are further composed to the hazy image in a self-supervised manner. Thanks to the unsupervised and untrained characteristics of YOLY, our method bypasses the conventional training paradigm of deep models on hazy-clean pairs or a large scale dataset, thus avoids the labor-intensive data collection and the domain shift issue. Besides, our method also provides an effective learning-based haze transfer solution thanks to its layer disentanglement mechanism. Extensive experiments show the promising performance of our method in image dehazing compared with 14 methods on four databases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源