论文标题

管理拥挤的博物馆:访客流量测量,分析,建模和优化

Managing Crowded Museums: Visitors Flow Measurement, Analysis, Modeling, and Optimization

论文作者

Centorrino, Pietro, Corbetta, Alessandro, Cristiani, Emiliano, Onofri, Elia

论文摘要

我们对拥挤的博物馆中的游客进行了全方位研究:Lagrangian野外测量和统计分析的结合,使我们能够创建客人动态的随机数字二线,释放舒适性和安全驱动的优化。我们的案例研究是罗马(意大利)的Borghese Galleria Borghese博物馆,我们在其中进行了现实生活中的数据获取活动。 我们专门采用基于拉格朗日物联网的访客跟踪系统,该系统基于Raspberry Pi接收器,在整个博物馆房间的固定位置以及移交给游客的便携式蓝牙低能信标上的固定位置。多亏了两种算法:基于滑动窗口的统计分析和MLP神经网络,我们过滤了信标RSSI,并在室内准确地重建访客轨迹。通过聚类分析,铰接在原始的Wasserstein样轨迹空间度量上,我们分析了访问者的路径,以获取行为洞察力,包括最常见的流动模式。在这些基础上,我们构建了过渡矩阵,以概率描述房间尺度的访客流动。这种矩阵是能够在计算机中产生访客轨迹的随机模型的基石。我们通过使用模拟器来增加日常访问者的数量,同时尊重众多的后勤和安全限制。这要归功于优化的票务和新的入口/退出管理。

We present an all-around study of the visitors flow in crowded museums: a combination of Lagrangian field measurements and statistical analyses enable us to create stochastic digital-twins of the guests dynamics, unlocking comfort- and safety-driven optimizations. Our case study is the Galleria Borghese museum in Rome (Italy), in which we performed a real-life data acquisition campaign. We specifically employ a Lagrangian IoT-based visitor tracking system based on Raspberry Pi receivers, displaced in fixed positions throughout the museum rooms, and on portable Bluetooth Low Energy beacons handed over to the visitors. Thanks to two algorithms: a sliding window-based statistical analysis and an MLP neural network, we filter the beacons RSSI and accurately reconstruct visitor trajectories at room-scale. Via a clustering analysis, hinged on an original Wasserstein-like trajectory-space metric, we analyze the visitor paths to get behavioral insights, including the most common flow patterns. On these bases, we build the transition matrix describing, in probability, the room-scale visitor flows. Such a matrix is the cornerstone of a stochastic model capable of generating visitor trajectories in silico. We conclude by employing the simulator to increase the number of daily visitors while respecting numerous logistic and safety constraints. This is possible thanks to optimized ticketing and new entrance/exit management.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源