论文标题
基于Polya树的开放式野生动植物种群的一般建模框架
A general modelling framework for open wildlife populations based on the Polya Tree prior
论文作者
论文摘要
可以使用多种不同的调查方法对开放人群进行野生动植物监测。每种调查方法都会产生一种数据类型,在过去的五十年中,已经开发了大量相关的统计模型来分析这些数据。尽管这些模型已通过不同的方法进行了参数化和拟合,但它们均已设计为模拟个人进入和退出人口并估算人口规模的模式。但是,现有方法依赖于预定义的模型结构和复杂性,要么通过假设参数特定于采样场合或使用参数曲线。取而代之的是,我们提出了一个新型的贝叶斯非参数框架,用于建模基于密度的Polya树(PT)的出口模式。我们的贝叶斯非参数方法在推断进入和退出模式时避免过度适应,同时允许使用参数曲线更具灵活性。我们将新框架应用于捕获重新接收,计数和环回数据数据,并介绍了重复的PT先验,以定义这些数据的模型类别。此外,我们定义了共同建模相关数据的层次逻辑PT,并考虑了对长时间数据进行建模的可选PT。我们使用五个关于鸟类,两栖动物和昆虫的不同案例研究证明了我们的新方法。
Wildlife monitoring for open populations can be performed using a number of different survey methods. Each survey method gives rise to a type of data and, in the last five decades, a large number of associated statistical models have been developed for analysing these data. Although these models have been parameterised and fitted using different approaches, they have all been designed to model the pattern with which individuals enter and exit the population and to estimate the population size. However, existing approaches rely on a predefined model structure and complexity, either by assuming that parameters are specific to sampling occasions, or by employing parametric curves. Instead, we propose a novel Bayesian nonparametric framework for modelling entry and exit patterns based on the Polya Tree (PT) prior for densities. Our Bayesian non-parametric approach avoids overfitting when inferring entry and exit patterns while simultaneously allowing more flexibility than is possible using parametric curves. We apply our new framework to capture-recapture, count and ring-recovery data and we introduce the replicated PT prior for defining classes of models for these data. Additionally, we define the Hierarchical Logistic PT prior for jointly modelling related data and we consider the Optional PT prior for modelling long time series of data. We demonstrate our new approach using five different case studies on birds, amphibians and insects.