论文标题

通过张量超收集的化学计算更有效的量子计算

Even more efficient quantum computations of chemistry through tensor hypercontraction

论文作者

Lee, Joonho, Berry, Dominic W., Gidney, Craig, Huggins, William J., McClean, Jarrod R., Wiebe, Nathan, Babbush, Ryan

论文摘要

我们描述了只有$ \ widetilde {\ cal o}(n)$ toffoli复杂性的量子回路,该$ toffoli复杂性在$ n $ nutary(例如,分子)轨道的基础上编码量子化学的光谱。使用这些电路的$ {\ cal o}(λ/ε)$重复,可以使用相位估计来在分子本本基础中进行采样,其中$λ$是汉密尔顿系数的1符号,$ε$是目标精度。这是在任意基础上显示化学量子计算的最低复杂性。此外,直到对数因素,这与最有效的先前块编码的缩放匹配,这些块的缩放只能与对角度化coloumb操作员对角线的正交基函数(例如,平面波二基)。我们的关键见解是使用一种称为张量超收集(THC)的方法对哈密顿量进行分解,然后将库仑操作员转变为具有THC因子定义的非正交基础的同一对角线形式。然后,我们使用Qubitization模拟非正交的THC Hamiltonian,这种方式避免了大多数非正交基础的并发症。我们还重新分析并降低了这些模拟的几种最佳先前算法的成本,以促进与当前工作的明确比较。除了具有较低的渐近缩放时间量表外,我们的算法汇编了诸如Femoco之类的有限有限分子的算法还表明,我们的方法需要任何已知方法的最低耐断层资源。通过提出和优化我们方法所需的表面代码资源,我们表明可以使用大约400万个物理Qubit和在运行时间的四天以下模拟Femoco,假设$ 1 \,μ$ S周期循环时间和物理门错误率不到$ 0.1 \%$ $。

We describe quantum circuits with only $\widetilde{\cal O}(N)$ Toffoli complexity that block encode the spectra of quantum chemistry Hamiltonians in a basis of $N$ arbitrary (e.g., molecular) orbitals. With ${\cal O}(λ/ ε)$ repetitions of these circuits one can use phase estimation to sample in the molecular eigenbasis, where $λ$ is the 1-norm of Hamiltonian coefficients and $ε$ is the target precision. This is the lowest complexity that has been shown for quantum computations of chemistry within an arbitrary basis. Furthermore, up to logarithmic factors, this matches the scaling of the most efficient prior block encodings that can only work with orthogonal basis functions diagonalizing the Coloumb operator (e.g., the plane wave dual basis). Our key insight is to factorize the Hamiltonian using a method known as tensor hypercontraction (THC) and then to transform the Coulomb operator into an isospectral diagonal form with a non-orthogonal basis defined by the THC factors. We then use qubitization to simulate the non-orthogonal THC Hamiltonian, in a fashion that avoids most complications of the non-orthogonal basis. We also reanalyze and reduce the cost of several of the best prior algorithms for these simulations in order to facilitate a clear comparison to the present work. In addition to having lower asymptotic scaling spacetime volume, compilation of our algorithm for challenging finite-sized molecules such as FeMoCo reveals that our method requires the least fault-tolerant resources of any known approach. By laying out and optimizing the surface code resources required of our approach we show that FeMoCo can be simulated using about four million physical qubits and under four days of runtime, assuming $1\,μ$s cycle times and physical gate error rates no worse than $0.1\%$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源