论文标题
可解释的和协同的深度学习,用于从医学图像中对疾病特征分割的视觉解释和统计估计
Interpretable and synergistic deep learning for visual explanation and statistical estimations of segmentation of disease features from medical images
论文作者
论文摘要
从无关的自然世界图像中的转移学习(TL)对疾病分类或从医学图像进行分割的深度学习模型(DL)模型越来越多。但是,TL对医学成像领域中专业任务的缺点和实用性仍然未知,并且基于假设增加培训数据将改善性能。我们报告了详细的比较,严格的统计分析以及与Imakenet初始化(TII模型)在TL之后广泛使用的DL结构的比较,仅具有宏观光学光学型样型,显微镜核心前列腺癌和计算机摄影(CT)的医学图像(LMI-Models),并仅使用医学图像(LMI-Models)进行监督学习。通过目视检查TII和LMI模型输出及其GRAD-CAM对应物,我们的结果确定了几种对抗直觉的情况,其中通过模型对一个肿瘤进行自动分割,或使用各个模型中各种组合中的单个分段输出掩码的使用,从而提高了性能的10%。我们还报告了成熟的集合DL策略,以实现临床等级的医学图像细分和模型解释低的数据制度。例如;我们所描述的LMI和TII模型的估计性能,解释和可复制性可以用于稀疏性促进更好学习的情况。 TII和LMI模型,代码以及10,000多个医学图像及其GRAD-CAM输出的免费GITHUB存储库可以用作生物医学发现和应用的高级计算医学和DL研究的起点。
Deep learning (DL) models for disease classification or segmentation from medical images are increasingly trained using transfer learning (TL) from unrelated natural world images. However, shortcomings and utility of TL for specialized tasks in the medical imaging domain remain unknown and are based on assumptions that increasing training data will improve performance. We report detailed comparisons, rigorous statistical analysis and comparisons of widely used DL architecture for binary segmentation after TL with ImageNet initialization (TII-models) with supervised learning with only medical images(LMI-models) of macroscopic optical skin cancer, microscopic prostate core biopsy and Computed Tomography (CT) DICOM images. Through visual inspection of TII and LMI model outputs and their Grad-CAM counterparts, our results identify several counter intuitive scenarios where automated segmentation of one tumor by both models or the use of individual segmentation output masks in various combinations from individual models leads to 10% increase in performance. We also report sophisticated ensemble DL strategies for achieving clinical grade medical image segmentation and model explanations under low data regimes. For example; estimating performance, explanations and replicability of LMI and TII models described by us can be used for situations in which sparsity promotes better learning. A free GitHub repository of TII and LMI models, code and more than 10,000 medical images and their Grad-CAM output from this study can be used as starting points for advanced computational medicine and DL research for biomedical discovery and applications.