论文标题

在封闭环境中循环封闭检测的参数优化

Parameter Optimization for Loop Closure Detection in Closed Environments

论文作者

Rottmann, Nils, Bruder, Ralf, Xue, Honghu, Schweikard, Achim, Rueckert, Elmar

论文摘要

调整参数对于定位和映射算法的性能至关重要。通常,对参数的调整需要专家知识,并且对有关环境结构的信息敏感。为了设计真正的自主系统,机器人必须自动学习参数。因此,我们提出了一种在封闭环境中循环闭合检测的参数优化方法,这两种方法都不需要任何先前的信息,例如机器人模型参数或专家知识。它依靠沿封闭环境的边界线的几个路径遍历。我们在挑战现实世界方面的感应能力有限的情况下展示了我们方法的性能。这些方案对于包括草坪割草机和家用机器人在内的广泛实用应用是典范的。

Tuning parameters is crucial for the performance of localization and mapping algorithms. In general, the tuning of the parameters requires expert knowledge and is sensitive to information about the structure of the environment. In order to design truly autonomous systems the robot has to learn the parameters automatically. Therefore, we propose a parameter optimization approach for loop closure detection in closed environments which requires neither any prior information, e.g. robot model parameters, nor expert knowledge. It relies on several path traversals along the boundary line of the closed environment. We demonstrate the performance of our method in challenging real world scenarios with limited sensing capabilities. These scenarios are exemplary for a wide range of practical applications including lawn mowers and household robots.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源