论文标题

深层解释的分类和弱监督的组织学分割通过Max-Min的不确定性

Deep Interpretable Classification and Weakly-Supervised Segmentation of Histology Images via Max-Min Uncertainty

论文作者

Belharbi, Soufiane, Rony, Jérôme, Dolz, Jose, Ayed, Ismail Ben, McCaffrey, Luke, Granger, Eric

论文摘要

弱监督的学习(WSL)最近引发了极大的兴趣,因为它减轻了缺乏像素的注释。给定全局图像标签,WSL方法产生像素级预测(分段),从而可以解释类预测。尽管他们最近的成功,主要是自然图像,但当前景区域和背景区域具有相似的视觉提示,在分割中产生高阳性速率时,这种方法可能会面临重要的挑战,而在具有挑战性的组织学图像中也是如此。 WSL培训通常是由标准分类损失驱动的,这些损失隐含地最大化模型置信度,并找到与分类决策相关的区分区域。因此,他们缺乏对明确非歧视区域进行建模和降低假阳性速率的机制。我们提出了新颖的正则化术语,这使该模型能够寻求非歧视性和歧视性区域,同时劝阻分段不平衡。我们将高度不确定性作为定位不影响分类器决策的非歧视区域的标准,并用原始的Kullback-Leibler(KL)差异损失来描述,以评估后验预测与统一分布的偏差。当后者输入潜在的非歧视区域时,我们的KL术语鼓励模型的高度不确定性。我们的损失整合:(i)寻求前景的跨凝结,其中模型对阶级预测的信心很高; (ii)kl正常器寻求背景,其中模型不确定性很高; (iii)登录词术语阻止分段不平衡。对公共GLAS结肠癌数据的全面实验和消融研究以及基于Camelyon16的基于贴剂的基准用于乳腺癌,对最先进的WSL方法进行了实质性改进,并确认了我们新的正则化剂的效果。

Weakly-supervised learning (WSL) has recently triggered substantial interest as it mitigates the lack of pixel-wise annotations. Given global image labels, WSL methods yield pixel-level predictions (segmentations), which enable to interpret class predictions. Despite their recent success, mostly with natural images, such methods can face important challenges when the foreground and background regions have similar visual cues, yielding high false-positive rates in segmentations, as is the case in challenging histology images. WSL training is commonly driven by standard classification losses, which implicitly maximize model confidence, and locate the discriminative regions linked to classification decisions. Therefore, they lack mechanisms for modeling explicitly non-discriminative regions and reducing false-positive rates. We propose novel regularization terms, which enable the model to seek both non-discriminative and discriminative regions, while discouraging unbalanced segmentations. We introduce high uncertainty as a criterion to localize non-discriminative regions that do not affect classifier decision, and describe it with original Kullback-Leibler (KL) divergence losses evaluating the deviation of posterior predictions from the uniform distribution. Our KL terms encourage high uncertainty of the model when the latter inputs the latent non-discriminative regions. Our loss integrates: (i) a cross-entropy seeking a foreground, where model confidence about class prediction is high; (ii) a KL regularizer seeking a background, where model uncertainty is high; and (iii) log-barrier terms discouraging unbalanced segmentations. Comprehensive experiments and ablation studies over the public GlaS colon cancer data and a Camelyon16 patch-based benchmark for breast cancer show substantial improvements over state-of-the-art WSL methods, and confirm the effect of our new regularizers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源