论文标题
操纵刚性尖端对象的较长的地平线规划框架
A Long Horizon Planning Framework for Manipulating Rigid Pointcloud Objects
论文作者
论文摘要
我们提出了一个框架,用于解决涉及直接从点云观测操作的刚性对象(即没有先前的对象模型)的刚性对象的框架。我们的方法计划在对象子目标的空间中,并通过依靠一组可推广的操作基础来使计划者免于有关机器人对象交互动力学的推理。我们表明,对于刚性的身体,可以使用低级操纵技能来实现此抽象,从而保持与物体的接触并表示子目标作为3D变换。为了使概括能够看不见的对象并提高计划绩效,我们提出了一种新颖的方式来代表刚体操纵的子目标,以及用于处理点云输入的基于图形的神经网络体系结构。我们使用Yumi机器人上的模拟和现实世界实验来实验验证这些选择。结果表明,我们的方法可以成功地将新对象操纵到需要长期计划的目标配置中。总体而言,我们的框架实现了任务和动作计划(TAMP)和基于学习的方法的最佳世界。项目网站:https://anthonysimeonov.github.io/rpo-planning-framework/。
We present a framework for solving long-horizon planning problems involving manipulation of rigid objects that operates directly from a point-cloud observation, i.e. without prior object models. Our method plans in the space of object subgoals and frees the planner from reasoning about robot-object interaction dynamics by relying on a set of generalizable manipulation primitives. We show that for rigid bodies, this abstraction can be realized using low-level manipulation skills that maintain sticking contact with the object and represent subgoals as 3D transformations. To enable generalization to unseen objects and improve planning performance, we propose a novel way of representing subgoals for rigid-body manipulation and a graph-attention based neural network architecture for processing point-cloud inputs. We experimentally validate these choices using simulated and real-world experiments on the YuMi robot. Results demonstrate that our method can successfully manipulate new objects into target configurations requiring long-term planning. Overall, our framework realizes the best of the worlds of task-and-motion planning (TAMP) and learning-based approaches. Project website: https://anthonysimeonov.github.io/rpo-planning-framework/.