论文标题

人类运动预测的对抗精炼网络

Adversarial Refinement Network for Human Motion Prediction

论文作者

Chao, Xianjin, Bin, Yanrui, Chu, Wenqing, Cao, Xuan, Ge, Yanhao, Wang, Chengjie, Li, Jilin, Huang, Feiyue, Leung, Howard

论文摘要

人类运动预测旨在通过提供有限的人类运动作为输入来预测未来的3D骨骼序列。两种流行的方法,即经常性的神经网络和进料前进的深层网络,能够预测粗糙的运动趋势,但是诸如肢体运动之类的运动细节可能会丢失。为了预测更准确的未来人类运动,我们提出了一个对抗性改进网络(ARNET),遵循一种简单而有效的粗到精细机制,并具有新颖的对抗性误差增强。具体而言,我们同时将历史运动序列和粗略预测作为级联精炼网络的输入,以预测精致的人类运动并通过对抗性误差增强来增强改进网络。在培训期间,我们通过通过不同受试者之间的对抗机制学习来故意介绍错误分布。在测试中,我们的级联改进网络减轻了粗糙预测因子的预测误差,从而实现了更精细的预测。这种对抗性错误增加提供了丰富的错误情况,作为我们的改进网络的输入,从而在测试数据集上提供了更好的概括性能。我们对三个标准基准数据集进行了广泛的实验,并表明我们所提出的ARNET优于其他最先进的方法,尤其是在短期和长期预测中挑战上的大约作用方面。

Human motion prediction aims to predict future 3D skeletal sequences by giving a limited human motion as inputs. Two popular methods, recurrent neural networks and feed-forward deep networks, are able to predict rough motion trend, but motion details such as limb movement may be lost. To predict more accurate future human motion, we propose an Adversarial Refinement Network (ARNet) following a simple yet effective coarse-to-fine mechanism with novel adversarial error augmentation. Specifically, we take both the historical motion sequences and coarse prediction as input of our cascaded refinement network to predict refined human motion and strengthen the refinement network with adversarial error augmentation. During training, we deliberately introduce the error distribution by learning through the adversarial mechanism among different subjects. In testing, our cascaded refinement network alleviates the prediction error from the coarse predictor resulting in a finer prediction robustly. This adversarial error augmentation provides rich error cases as input to our refinement network, leading to better generalization performance on the testing dataset. We conduct extensive experiments on three standard benchmark datasets and show that our proposed ARNet outperforms other state-of-the-art methods, especially on challenging aperiodic actions in both short-term and long-term predictions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源