论文标题

组$ c^*$ - 作用在树上的本地紧凑型组的代数

Group $C^*$-algebras of locally compact groups acting on trees

论文作者

Heinig, Dennis, de Laat, Tim, Siebenand, Timo

论文摘要

我们研究组$ c^*$ - 代数$ c^*_ {l^{p+}}(g)$ - 由$ l^p $ - 统一表示的矩阵系数的矩阵系数的构建 - 属于本地紧凑的组的$ g $ g $在(半型)同质树上的均等小型树。这些组$ c^*$ - 代数位于通用和简化组$ c^*$ - 代数之间。通过直接调查这些$ l^p $ - 整合性属性,我们首先表明,对于每一个非紧密的,封闭的亚组$ g $,$ \ mathrm {aut}(aut}(t)$的(半)同质的树$ t $都可以在边界$ \ \ paus $ 2 $ 2 \ le q le q le q p p p p \ p p p p p \ p p p p p \ p p p p \ p p p。 $ c^*_ {l^{p+}}}(g)\ tweatheadRightArrow c^*_ {l^{q+}}}(g)$不是注入的。这谴责了Samei和Wiersma的结果。我们证明,在其他假设的情况下,$ g $在$ t $上进行了传递作用,并且它具有山雀的独立性,$ c^*$ - 代数$ c^*_ {l^{l^{p+}}(g)$是唯一来自$ g $ -g $ -g $ -invariant Idealss $ gene gene gene gere-s-al的组$ c^*$ - algebras。此外,我们表明,像以前一样给定一个组$ g $,每组$ c^*$ - 代数$ c^*_μ(g)$可区分的(作为$ c^*$ - 代数)与通用$ c^*$ - $ g $的$ g $的代数 - $ {}^*$ - 简化组$ c^*$ - $ g $的代数。

We study the group $C^*$-algebras $C^*_{L^{p+}}(G)$ - constructed from $L^p$-integrability properties of matrix coefficients of unitary representations - of locally compact groups $G$ acting on (semi-)homogeneous trees of sufficiently large degree. These group $C^*$-algebras lie between the universal and the reduced group $C^*$-algebra. By directly investigating these $L^p$-integrability properties, we first show that for every non-compact, closed subgroup $G$ of the automorphism group $\mathrm{Aut}(T)$ of a (semi-)homogeneous tree $T$ that acts transitively on the boundary $\partial T$ and every $2 \leq q < p \leq \infty$, the canonical quotient map $C^*_{L^{p+}}(G) \twoheadrightarrow C^*_{L^{q+}}(G)$ is not injective. This reproves a result of Samei and Wiersma. We prove that under the additional assumptions that $G$ acts transitively on $T$ and that it has Tits' independence property, the group $C^*$-algebras $C^*_{L^{p+}}(G)$ are the only group $C^*$-algebras coming from $G$-invariant ideals in the Fourier-Stieltjes algebra $B(G)$. Additionally, we show that given a group $G$ as before, every group $C^*$-algebra $C^*_μ(G)$ that is distinguishable (as a group $C^*$-algebra) from the universal group $C^*$-algebra of $G$ and whose dual space $C^*_μ(G)^*$ is a $G$-invariant ideal in $B(G)$ is abstractly ${}^*$-isomorphic to the reduced group $C^*$-algebra of $G$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源