论文标题
Histogan:通过颜色直方图控制GAN生成和真实图像的颜色
HistoGAN: Controlling Colors of GAN-Generated and Real Images via Color Histograms
论文作者
论文摘要
尽管生成的对抗网络(GAN)可以成功地产生高质量的图像,但它们可能具有挑战性。简化基于GAN的图像生成对于它们在图形设计和艺术作品中的采用至关重要。这个目标引起了人们对可以直观地控制甘恩产生的图像外观的方法的重大兴趣。在本文中,我们提出了Histogan,这是一种基于颜色直方图的方法,用于控制GAN生成的图像的颜色。我们专注于颜色直方图,因为它们提供了一种直观的方式来描述图像颜色,同时又与特定于域的语义脱在一起。具体而言,我们介绍了最近的StyleGAN体系结构的有效修改,以控制目标颜色直方图特征指定的GAN生成图像的颜色。然后,我们描述了如何扩展历史图以重新着色真实图像。对于图像重新着色,我们与Histogan共同训练编码器网络。重新上色模型Rehistogan是一种无监督的方法,该方法训练有素,可以鼓励网络根据给定的目标直方图更改颜色,以保持原始图像的内容。我们表明,这种基于直方图的方法提供了一种更好的方法来控制GAN生成和真实图像的颜色,同时与现有替代策略相比产生更具吸引力的结果。
While generative adversarial networks (GANs) can successfully produce high-quality images, they can be challenging to control. Simplifying GAN-based image generation is critical for their adoption in graphic design and artistic work. This goal has led to significant interest in methods that can intuitively control the appearance of images generated by GANs. In this paper, we present HistoGAN, a color histogram-based method for controlling GAN-generated images' colors. We focus on color histograms as they provide an intuitive way to describe image color while remaining decoupled from domain-specific semantics. Specifically, we introduce an effective modification of the recent StyleGAN architecture to control the colors of GAN-generated images specified by a target color histogram feature. We then describe how to expand HistoGAN to recolor real images. For image recoloring, we jointly train an encoder network along with HistoGAN. The recoloring model, ReHistoGAN, is an unsupervised approach trained to encourage the network to keep the original image's content while changing the colors based on the given target histogram. We show that this histogram-based approach offers a better way to control GAN-generated and real images' colors while producing more compelling results compared to existing alternative strategies.