论文标题

将人类的特定环境适应与元学习联系起来

Connecting Context-specific Adaptation in Humans to Meta-learning

论文作者

Dubey, Rachit, Grant, Erin, Luo, Michael, Narasimhan, Karthik, Griffiths, Thomas

论文摘要

认知控制是系统适应任务需求的能力,是认知的组成部分。关于认知控制的一个广泛接受的事实是,它是上下文敏感的:成人和儿童都从上下文提示中推断出有关任务需求的信息,并使用这些推论从模棱两可的提示中学习。但是,人们使用上下文提示指导对新任务的适应性的确切方式仍然知之甚少。这项工作将认知控制的上下文敏感性与通过上下文条件适应的元学习方法联系起来。首先,我们确定人类学习与当前的元学习方法之间的本质区别:与人类相反,现有的元学习算法并不利用特定于任务的上下文提示,而是仅以任务特定的标签或重新介绍的形式依靠在线反馈。为了解决这个问题,我们介绍了一个框架,用于使用有关任务的上下文信息,以指导特定于任务模型的初始化,然后再适应在线反馈。我们展示了上下文条件条件的元学习如何在认知任务中捕获人类行为,以及如何将其缩放以提高各种环境中的学习速度,包括很少的分类和低样本的增强学习。我们的工作表明,通过任务信息指导元学习可以捕捉复杂的人类行为,从而加深我们对认知控制的理解。

Cognitive control, the ability of a system to adapt to the demands of a task, is an integral part of cognition. A widely accepted fact about cognitive control is that it is context-sensitive: Adults and children alike infer information about a task's demands from contextual cues and use these inferences to learn from ambiguous cues. However, the precise way in which people use contextual cues to guide adaptation to a new task remains poorly understood. This work connects the context-sensitive nature of cognitive control to a method for meta-learning with context-conditioned adaptation. We begin by identifying an essential difference between human learning and current approaches to meta-learning: In contrast to humans, existing meta-learning algorithms do not make use of task-specific contextual cues but instead rely exclusively on online feedback in the form of task-specific labels or rewards. To remedy this, we introduce a framework for using contextual information about a task to guide the initialization of task-specific models before adaptation to online feedback. We show how context-conditioned meta-learning can capture human behavior in a cognitive task and how it can be scaled to improve the speed of learning in various settings, including few-shot classification and low-sample reinforcement learning. Our work demonstrates that guiding meta-learning with task information can capture complex, human-like behavior, thereby deepening our understanding of cognitive control.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源