论文标题
在任意特征中嵌入表面奇点的嵌入式分辨率的新证明
A New Proof for the Embedded Resolution of Surface Singularities in Arbitrary Characteristic
论文作者
论文摘要
在三维光滑的环境空间中,在任意特征的代数封闭场上,在三维平滑环境空间中嵌入表面奇点的嵌入式证明。该证明利用了上半连续分辨率不变的,该分辨率不变,该分辨率在分辨率算法的每个步骤中规定了中心。在每个爆炸下,分辨率不变严格降低。分辨率不变的定义是灵感来自于特征零字段中任意维度中奇点的分辨率的证据。它的开发是为了将这些证据推广到任意特征的设置。在特征零中使用的通常的分辨率不变性在积极特征的领域中表现出色。它不是上半连续的。此外,不变的可能会在爆炸中增加,从而破坏了归纳论点。在表面奇点的情况下,如何克服这些问题,这些问题嵌入了三维光滑的环境空间中。类似于特征零中奇异点的分辨率的证明,系数理想被用来使周围空间维度的诱导。由于在积极特征的领域不必存在最大接触的高度,因此相对于所有常规的浮雕而言,系数理想被视为。然后,在平滑子空间的所有本地标志上最大化相关的不变量。为了构建实现这一最大值的标志,引入了技术,以最大程度地提高所有坐标更改的系数理想。这些所谓的“清洁技术”构成了证明的核心部分。它们可以看作是Tschirnhausen Transformation的一种无特征性的概括,这是一种构建最大接触性高空的经典技术。
A new proof for the embedded resolution of surface singularities in a three-dimensional smooth ambient space over algebraically closed fields of arbitrary characteristic. The proof makes use of an upper semicontinuous resolution invariant which prescribes the center in each step of the resolution algorithm. The resolution invariant strictly decreases under each blowup. The definition of the resolution invariant is inspired by the proofs of resolution of singularities in arbitrary dimension over fields of characteristic zero. It was developed in an attempt to generalize these proofs to the setting of arbitrary characteristic. The usual resolution invariant which is used in characteristic zero behaves very badly over fields of positive characteristic. It is not upper semicontinuous. Further, the invariant may increase under blowup which destroys the induction argument. It is shown how these problems can be overcome in the case of surface singularities which are embedded in a three-dimensional smooth ambient space. Analogous to the proofs of resolution of singularities in characteristic zero, coefficient ideals are used to enable induction on the dimension of the ambient space. Since hypersurfaces of maximal contact need not exist over fields of positive characteristic, coefficient ideals are considered instead with respect to all regular hypersurfaces. The associated invariants are then maximized over all local flags of smooth subspaces. To construct flags which realize this maximum, techniques are introduced to maximize invariants of coefficient ideals over all coordinate changes. These so-called "cleaning techniques" form a core part of the proof. They can be seen as a characteristic-free generalization of the Tschirnhausen transformation, a classical technique to construct hypersurfaces of maximal contact.