论文标题
心脏机电模型与用于闭环血液循环的总参数模型结合。第一部分:模型推导
A cardiac electromechanics model coupled with a lumped parameters model for closed-loop blood circulation. Part I: model derivation
论文作者
论文摘要
我们提出了人心脏的综合机电模型,重点是左心室,其中生物物理详细的模型描述了与心脏功能同意的不同物理现象。我们通过人工神经网络对活性力的亚细胞生成进行建模,该网络是通过合适的机器学习算法训练的,该算法是从一系列预计的数值模拟的集合中,该算法的生物物理详细且含计算的高保真模型。为了提供生理有意义的结果,我们将3D机电模型与闭环0D(总参数)模型进行了融合,该模型描述了整个心血管网络中的血液循环。我们证明,这两个模型的3D-0D耦合符合能源保护原理,这是由于能量一致的边界条件而实现的,这些条件解释了计算域,心包和周围组织中心脏室之间的相互作用。因此,我们得出了3D-0D模型的机械能的总体平衡。这为心血管网络的不同隔室以及心跳的不同阶段之间的能量利用,耗散和转移提供了定量的见解。凭借这种新的模型和能量平衡,我们提出了一种新的验证工具,可以针对日常临床实践中使用的关系。最后,我们提供了一个逆问题的数学公式,旨在恢复一个或多个心脏室的参考配置,从从医学成像中获得的压力构型开始。这是正确初始化机电模拟的基础。 3D-0D模型的数值方法和模拟将在第二部分中详细介绍。
We propose an integrated electromechanical model of the human heart, with focus on the left ventricle, wherein biophysically detailed models describe the different physical phenomena concurring to the cardiac function. We model the subcellular generation of active force by means of an Artificial Neural Network, which is trained by a suitable Machine Learning algorithm from a collection of pre-computed numerical simulations of a biophysically detailed, yet computational demanding, high-fidelity model. To provide physiologically meaningful results, we couple the 3D electromechanical model with a closed-loop 0D (lumped parameters) model describing the blood circulation in the whole cardiovascular network. We prove that the 3D-0D coupling of the two models is compliant with the principle of energy conservation, which is achieved in virtue of energy-consistent boundary conditions that account for the interaction among cardiac chambers within the computational domain, pericardium and surrounding tissue. We thus derive an overall balance of mechanical energy for the 3D-0D model. This provides a quantitative insight into the energy utilization, dissipation and transfer among the different compartments of the cardiovascular network and during different stages of the heartbeat. In virtue of this new model and the energy balance, we propose a new validation tool of heart energy usage against relationships used in the daily clinical practice. Finally, we provide a mathematical formulation of an inverse problem aimed at recovering the reference configuration of one or multiple cardiac chambers, starting from the stressed configuration acquired from medical imaging. This is fundamental to correctly initialize electromechanical simulations. Numerical methods and simulations of the 3D-0D model will be detailed in Part II.