论文标题

用贝叶斯神经网络进行大规模重力镜头建模,以精确而精确的推理

Large-Scale Gravitational Lens Modeling with Bayesian Neural Networks for Accurate and Precise Inference of the Hubble Constant

论文作者

Park, Ji Won, Wagner-Carena, Sebastian, Birrer, Simon, Marshall, Philip J., Lin, Joshua Yao-Yu, Roodman, Aaron

论文摘要

我们研究了近似贝叶斯神经网络(BNN)在建模数百个时间段重力镜片中用于哈勃常数($ h_0 $)测定的模型。我们的BNN接受了具有透镜星系光的强烈镜头活性银核(AGN)的合成HST质量图像的训练。 BNN可以准确地表征模型参数的后PDF,该参数管理外部剪切场中椭圆形幂律质量谱。然后,我们使用合理的专用监控活动中的模拟时间延迟测量值将BNN扣除的后PDF传播到集合$ H_0 $推理中。假设时间延迟良好,并且在镜头环境上有一套合理的先验,我们在推断的$ H_0 $中获得了每个镜头$ 9.3 $ \%的中间精度。 200个测试镜头的简单组合导致精度为0.5 $ \ textrm {km s}^{ - 1} \ textrm {mpc}^{ - 1} $($ 0.7 \%\%$),在此$ h_0 $ h_0 $恢复测试中没有可检测的偏置。整个管道的计算时间(包括训练套装,BNN训练和$ H_0 $推理),随着样本量的增加,每张镜头平均每镜头9分钟,每镜头收敛6分钟。我们的管道是完全自动化和高效的,是用于$ h_0 $推理的镜头建模中的合奏水平系统的有前途的工具。

We investigate the use of approximate Bayesian neural networks (BNNs) in modeling hundreds of time-delay gravitational lenses for Hubble constant ($H_0$) determination. Our BNN was trained on synthetic HST-quality images of strongly lensed active galactic nuclei (AGN) with lens galaxy light included. The BNN can accurately characterize the posterior PDFs of model parameters governing the elliptical power-law mass profile in an external shear field. We then propagate the BNN-inferred posterior PDFs into ensemble $H_0$ inference, using simulated time delay measurements from a plausible dedicated monitoring campaign. Assuming well-measured time delays and a reasonable set of priors on the environment of the lens, we achieve a median precision of $9.3$\% per lens in the inferred $H_0$. A simple combination of 200 test-set lenses results in a precision of 0.5 $\textrm{km s}^{-1} \textrm{ Mpc}^{-1}$ ($0.7\%$), with no detectable bias in this $H_0$ recovery test. The computation time for the entire pipeline -- including the training set generation, BNN training, and $H_0$ inference -- translates to 9 minutes per lens on average for 200 lenses and converges to 6 minutes per lens as the sample size is increased. Being fully automated and efficient, our pipeline is a promising tool for exploring ensemble-level systematics in lens modeling for $H_0$ inference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源