论文标题

全球一致的非刚性重建的神经变形图

Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction

论文作者

Božič, Aljaž, Palafox, Pablo, Zollhöfer, Michael, Thies, Justus, Dai, Angela, Nießner, Matthias

论文摘要

我们介绍了用于全球一致的变形跟踪和非刚性对象的3D重建的神经变形图。具体而言,我们通过深神经网络隐式地对变形图进行了模拟。该神经变形图不依赖于任何特定对象的结构,因此可以应用于一般的非刚性变形跟踪。我们的方法在给定的一系列深度摄像头观察序列上,全局优化了该神经图。基于明确的观点一致性以及框架间图和表面一致性约束,基础网络以自我监督的方式进行训练。我们还针对具有隐式变形多MLP形状表示的对象的几何形状进行优化。我们的方法不假定顺序输入数据,从而实现快速运动甚至时间上断开的记录的鲁棒跟踪。我们的实验表明,我们的神经变形图优于最先进的非刚性重建方法,既有定性和定量,则改进了64%的重建,而62%改进了变形跟踪性能。

We introduce Neural Deformation Graphs for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects. Specifically, we implicitly model a deformation graph via a deep neural network. This neural deformation graph does not rely on any object-specific structure and, thus, can be applied to general non-rigid deformation tracking. Our method globally optimizes this neural graph on a given sequence of depth camera observations of a non-rigidly moving object. Based on explicit viewpoint consistency as well as inter-frame graph and surface consistency constraints, the underlying network is trained in a self-supervised fashion. We additionally optimize for the geometry of the object with an implicit deformable multi-MLP shape representation. Our approach does not assume sequential input data, thus enabling robust tracking of fast motions or even temporally disconnected recordings. Our experiments demonstrate that our Neural Deformation Graphs outperform state-of-the-art non-rigid reconstruction approaches both qualitatively and quantitatively, with 64% improved reconstruction and 62% improved deformation tracking performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源