论文标题

从深度学习中利用不确定性来获得值得信赖的材料发现工作流程

Leveraging Uncertainty from Deep Learning for Trustworthy Materials Discovery Workflows

论文作者

Zhang, Jize, Kailkhura, Bhavya, Han, T. Yong-Jin

论文摘要

在本文中,我们利用深层神经网络的预测不确定性来回答材料科学家通常在基于机器学习的材料应用程序工作流程中遇到的挑战性问题。首先,我们表明,通过利用预测性不确定性,用户可以确定达到一定的分类精度所需的训练数据集大小。接下来,我们提出不确定性指导决策,以检测和避免就混淆样本的决定做出决定。最后,我们表明预测不确定性也可以用于检测分布外测试样本。我们发现,该方案足够准确,可以检测到数据中的广泛现实世界变化,例如,图像采集条件的变化或合成条件的变化。以扫描电子显微镜(SEM)图像为例的微观结构信息为例用例,我们表明利用不确定性感知的深度学习可以显着提高分类模型的性能和可靠性。

In this paper, we leverage predictive uncertainty of deep neural networks to answer challenging questions material scientists usually encounter in machine learning based materials applications workflows. First, we show that by leveraging predictive uncertainty, a user can determine the required training data set size necessary to achieve a certain classification accuracy. Next, we propose uncertainty guided decision referral to detect and refrain from making decisions on confusing samples. Finally, we show that predictive uncertainty can also be used to detect out-of-distribution test samples. We find that this scheme is accurate enough to detect a wide range of real-world shifts in data, e.g., changes in the image acquisition conditions or changes in the synthesis conditions. Using microstructure information from scanning electron microscope (SEM) images as an example use case, we show that leveraging uncertainty-aware deep learning can significantly improve the performance and dependability of classification models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源