论文标题

高维机器人的快速反应概率运动计划

Fast-reactive probabilistic motion planning for high-dimensional robots

论文作者

Dai, Siyu, Hofmann, Andreas, Williams, Brian C.

论文摘要

许多涉及高维类人动物机器人的实际机器人操作需要快速反应来计划碰撞风险的干扰和概率保证,而对于类似汽车的机器人开发的大多数概率运动计划方法不能直接应用于高维机器人。在本文中,我们提出了一种概率Chekov(P-Chekov),这是一种快速反应的运动计划系统,可以为患有流程噪音和观察噪声的高维机器人提供安全保证。 P-Chekov利用机器学习的最新进展以及我们先前的确定性运动计划中的工作,将轨迹优化整合到稀疏的路线图框架中,P-Chekov在复杂环境中没有障碍物的复杂环境中的高维机器人运动计划中的碰撞避免能力和计划速度来证明其优势。本文提供的综合理论和经验分析表明,P-Chekov可以有效地满足用户指定的机会限制,而在实际机器人操纵任务中,对碰撞风险的机会限制。

Many real-world robotic operations that involve high-dimensional humanoid robots require fast-reaction to plan disturbances and probabilistic guarantees over collision risks, whereas most probabilistic motion planning approaches developed for car-like robots can not be directly applied to high-dimensional robots. In this paper, we present probabilistic Chekov (p-Chekov), a fast-reactive motion planning system that can provide safety guarantees for high-dimensional robots suffering from process noises and observation noises. Leveraging recent advances in machine learning as well as our previous work in deterministic motion planning that integrated trajectory optimization into a sparse roadmap framework, p-Chekov demonstrates its superiority in terms of collision avoidance ability and planning speed in high-dimensional robotic motion planning tasks in complex environments without the convexification of obstacles. Comprehensive theoretical and empirical analysis provided in this paper shows that p-Chekov can effectively satisfy user-specified chance constraints over collision risk in practical robotic manipulation tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源