论文标题
关于谱系谱理论II:几何和二元性
On Diers theory of Spectrum II: Geometries and dualities
论文作者
论文摘要
第二部分介绍了与多次裁缝相关的频谱的构建。利用对其多重属性的几何理解,将对象的光谱作为局部单元的空间获得,配备了正交性方面提供的拓扑。回忆起Diers原始结构后,本文引入了新材料。首先,我们解释了如何在模型空间类别之间的相邻情况下(如Topos Wheoretic方法中)进行纠正。然后,我们将过程的2个功能方面相对于2类diers上下文。我们提出了光谱二元性概念的公理化,这是通过一系列空间对象之间的振动之间的形态化,并展示了这种情况如何恢复正确的多伴侣函数。
This second part comes to the construction of the spectrum associated to a situation of multi-adjunction. Exploiting a geometric understanding of its multi-versal property, the spectrum of an object is obtained as the spaces of local units equipped with a topology provided by orthogonality aspects. After recalling Diers original construction, this paper introduces new material. First we explain how the situation of multi-adjunction can be corrected in a situation of adjunction between categories of modeled spaces as in the topos-theoretic approach. Then we come to the 2-functorial aspects of the process relatively to a 2-category of Diers contexts. We propose an axiomatization of the notion of spectral duality through morphisms between fibrations over a category of spatial objects, and show how such situations get back right multi-adjoint functors.