论文标题
液体结构搜索Li-Si系统的随机放松数据集
Dataset of Random Relaxations for Crystal Structure Search of Li-Si System
论文作者
论文摘要
晶体结构搜索是材料设计中的长期挑战。我们使用密度功能理论计算从随机结构中提出了一个超过100,000个潜在电池阳极材料的结构放松的数据集。我们通过训练图神经网络来说明数据集的用法,以预测随机生成的结构的结构放松。我们的模型除了力之外直接预测应力,这使他们能够准确模拟离子位置和晶格矢量的松弛。我们表明,经过分子动力学模拟训练的模型无法模拟随机结构的放松,而对数据的训练则导致同一任务的误差降低了两个数量级。我们的模型能够找到通过训练进行的化学计量测定法的实验验证的结构。我们发现,训练过程中随机扰动原子位置可提高模型的域泛化的准确性和外。
Crystal structure search is a long-standing challenge in materials design. We present a dataset of more than 100,000 structural relaxations of potential battery anode materials from randomized structures using density functional theory calculations. We illustrate the usage of the dataset by training graph neural networks to predict structural relaxations from randomly generated structures. Our models directly predict stresses in addition to forces, which allows them to accurately simulate relaxations of both ionic positions and lattice vectors. We show that models trained on the molecular dynamics simulations fail to simulate relaxations from random structures, while training on our data leads to up to two orders of magnitude decrease in error for the same task. Our model is able to find an experimentally verified structure of a stoichiometry held out from training. We find that randomly perturbing atomic positions during training improves both the accuracy and out of domain generalization of the models.