论文标题
在均匀的玻尔兹曼方程的指数时刻,无需截止
On exponential moments of the homogeneous Boltzmann equation for hard potentials without cutoff
论文作者
论文摘要
我们认为在没有截止的硬势方面具有空间均匀的Boltzmann方程。我们证明,顺序的指数力矩$ρ= \ min \ {2γ/(2-ν),2 \} $,带有通常的符号,立即创建。这比截止情况的情况要强。我们还表明,(0,2] $的订单$ρ\ $ρ\的指数时刻被传播。
We consider the spatially homogeneous Boltzmann equation for hard potentials without cutoff. We prove that an exponential moment of order $ρ=\min\{2γ/(2-ν),2\}$, with the usual notation, is immediately created. This is stronger than what happens in the case with cutoff. We also show that exponential moments of order $ρ\in (0,2]$ are propagated.