论文标题
Steinberg环与充足的环形捆
Noncommutative Pierce Duality between Steinberg Rings and Ample Ringoid Bundles
论文作者
论文摘要
皮尔斯(Pierce)和杜恩斯·霍夫曼(Dauns-Hofmann)的经典作品表明,双环环是在石头空间上的简单环束。我们将这种二元性扩展到Steinberg戒指,Steinberg圈,纯粹的代数代数代数和圆形束束。我们主要基于劳森(Lawson)非交通性的石头二元性的更一般性扩展,特别是在Steinberg Semigroups,布尔逆半群的概括和对ampul群体上的类别捆绑包之间的概括。
Classic work of Pierce and Dauns-Hofmann shows that biregular rings are dual to simple ring bundles over Stone spaces. We extend this duality to Steinberg rings, a purely algebraic generalisation of Steinberg algebras, and ringoid bundles over ample groupoids. We base this largely on an even more general extension of Lawson's noncommutative Stone duality, specifically between Steinberg semigroups, a generalisation of Boolean inverse semigroups, and category bundles over ample groupoids.