论文标题
正确的块设计实验减轻脑电图分类中的时间相关性偏差
Correct block-design experiments mitigate temporal correlation bias in EEG classification
论文作者
论文摘要
在[1]中认为,[2]能够仅是因为所有脑电图数据中存在的时间相关性和使用块设计的时间相关性,因此能够对脑电图对视觉刺激的响应进行分类。我们在这里表明,[1]中的主要主张被夸大了,其其他分析被错误的方法论选择严重缺陷。为了验证我们的反索赔,我们评估了[2]中数据集上最先进方法的性能,达到40个类别的分类精度约为50%,低于[2],但仍然很重要。然后,我们通过在两个附加的实验设置中测试相同的模型来研究脑电图时间相关性对分类精度的影响:一个复制[1]的快速设计实验,另一个检查块之间的数据时,显示对象之间的数据时显示了一个空白屏幕。在这两种情况下,分类准确性都处于或接近机会,与[1]报告相比,表明时间相关与分类精度的贡献可忽略不计。取而代之的是,只有在诱导时间相关性故意污染我们的数据时,我们才能在[1]中复制结果。这表明Li等人的内容。 [1]证明它们的数据受到时间相关性和低信噪比的强烈污染。我们认为Li等人的原因。 [1]观察到脑电图数据中如此高的相关性是它们非常规实验设计和设置,违反了基本的认知神经科学设计建议,首先是限制实验持续时间的最重要的,而是[2]所做的。我们在本文中进行的分析反驳了[1]中“阻止设计的危险和陷阱”的主张。最后,我们通过研究[1]中的许多其他简化陈述,误解,对机器学习概念的误解,误解和误导性主张来结束论文。
It is argued in [1] that [2] was able to classify EEG responses to visual stimuli solely because of the temporal correlation that exists in all EEG data and the use of a block design. We here show that the main claim in [1] is drastically overstated and their other analyses are seriously flawed by wrong methodological choices. To validate our counter-claims, we evaluate the performance of state-of-the-art methods on the dataset in [2] reaching about 50% classification accuracy over 40 classes, lower than in [2], but still significant. We then investigate the influence of EEG temporal correlation on classification accuracy by testing the same models in two additional experimental settings: one that replicates [1]'s rapid-design experiment, and another one that examines the data between blocks while subjects are shown a blank screen. In both cases, classification accuracy is at or near chance, in contrast to what [1] reports, indicating a negligible contribution of temporal correlation to classification accuracy. We, instead, are able to replicate the results in [1] only when intentionally contaminating our data by inducing a temporal correlation. This suggests that what Li et al. [1] demonstrate is that their data are strongly contaminated by temporal correlation and low signal-to-noise ratio. We argue that the reason why Li et al. [1] observe such high correlation in EEG data is their unconventional experimental design and settings that violate the basic cognitive neuroscience design recommendations, first and foremost the one of limiting the experiments' duration, as instead done in [2]. Our analyses in this paper refute the claims of the "perils and pitfalls of block-design" in [1]. Finally, we conclude the paper by examining a number of other oversimplistic statements, inconsistencies, misinterpretation of machine learning concepts, speculations and misleading claims in [1].