论文标题
通过轨道角动量干涉法和多色分析的地静止实时3D极化雷达成像
Geostationary Real-Time 3D Polarimetric RADAR Imaging by Orbital Angular Momentum Interferometry and Multi-Chromatic Analysis
论文作者
论文摘要
我们使用轨道角动量(OAM)干涉测量法 - 无线电检测和范围(HR-RT-GEOPOLINT-OAM-RADAR)(HR-RT-GEOPOPOLINT-OAM-RADAR)(MCA)(MCA)设计了高分辨率(HR)实时(HR)实时(HR)实时(HR)的概念证明(POL)(POL) (HR-RT-GOPOPOLINT-OAM-MCA-TOMORADAR)。 OAM干涉测量通信通道是由通过给定空间基线距离距离距离的两个固定源生成的,并用于范围 - 齐路合成。相反,频道用于提供有关高度的信息。最后,与旋转角动量(SAM)相关的电磁(EM)波的极化中编码的信息用于合成具有技术冗余的全pol雷达图像。在这里,我们介绍了针对地理应用定制的平面涡流天线的设计,其中成像系统使用渐进的chirp策略和单模OAM线性增量调制。我们将每个维度的分辨率分配给EM波假设的三个频段。从HR-RT-Gopolint-OAM通信通道反向散射信号接收到的径向和切向成分,用于通过快速变换(FFT)技术来焦点,这是在给定恒定频率下属于单个时期的范围 - 齐路图像。使用MCA,每个OAM快速雷达图像频率分开。对于整个阶梯频率的chirp的所有时期,重复此过程。一旦合成了每个二维图像,它们就会共同注册,并通过使用FFT技术将HR-RT-gopolint-Ma-MCA-Tomoradar切片集中在高度上。范围 - 齐路和断层分辨率取决于OAM值和阶梯频率的CHIRP带宽。
We design the proof of concept for high-resolution (HR) real-time (RT), Geosynchronous and Geostationary (Geo) Polarimetric (Pol) using orbital angular momentum (OAM) interferometry - radio detection and ranging (RADAR) (HR-RT-GeoPolInt-OAM-RADAR) and multi-chromatic analysis (MCA) extended to Tomography (HR-RT-GeoPolInt-OAM-MCA-TomoRADAR). The OAM interferometry communication channel is generated by two fixed sources distanced by a given spatial baseline and used for range-azimuth synthesis. The frequency channel, instead, is used to provide information about the altitude. Finally, the information encoded in the polarization of the electromagnetic (EM) waves, which is related to the Spin Angular Momentum (SAM), is used to synthesize full-Pol RADAR images, with technological redundancy. Here we present the design of a planar vortex antenna, tailored for Geo applications, where the imaging system transmits ''ad-hoc`` structured wave packets using an incremental stepped chirp strategy and with single-mode OAM linearly incremented modulation. We assign the resolutions of each dimension to three bands assumed by the EM wave. The radial and tangential components received from the HR-RT-GeoPolInt-OAM communication channel backscattered signals are used to focus, through fast-Fourier transform (FFT) techniques, a range-azimuth image that belongs to a single epoch at a given constant frequency. Each OAM fast-time RADAR image is separated in frequency by using MCA. This procedure is repeated for all the epochs of the entire stepped-frequency chirp. Once each two-dimensional image is synthesized, they are co-registered, and the HR-RT-GeoPolInt-OAM-MCA-TomoRADAR slices are focused in altitude by using FFT techniques. Range-azimuth and tomographic resolutions depend on the OAM value and the stepped frequency chirp bandwidths.