论文标题
通过戒指的加性亚组生成理想
Generating ideals by additive subgroups of rings
论文作者
论文摘要
我们获得了有限索引理想和环的添加剂亚组以及环的模型相关组件的几个基本结果,这些组件涉及在添加剂的环内有限的许多步骤中产生的。 令$ r $为配备任意额外的一阶结构的任何戒指,以及$ a $ a a $一组参数。我们表明,每当$ h $是$ - 可定义的有限指数子组为$(r,+)$,然后$ h+rh $包含一个$ a $ a $ - 可定义的,有限索引的双面理想。作为一种推论,我们积极回答[组和戒指的Bohr压缩问题3.9,J。Gismatullin,G。Jagiella和K.krupiński]:如果$ r $是Unital的,则$(\ bar r, +) (\ bar r,+)^{00} _a = \ bar r^{00} _a $,其中$ \ bar r \ succ r $是$ r $的足够饱和的基本扩展,$ r $,$(\ bar r,+) $ \ bar r^{00} _a $]是最小的$ a $ type-type-type,有限的索引添加剂子组[resp。 $ \ bar r $的理想]。这意味着$ \ bar r^{00} _a = \ bar r^{000} _a $,其中$ \ bar r^{000} _a $是$ a $ a $,有限的索引理想的$ \ bar r $的最小不变。如果$ r $具有有限的特征(不一定是Unitital),我们会得到一个更敏锐的结果:$(\ bar r,+)^{00} _a+\ bar r \ cdot(\ bar r,+)^{00} _a = \ bar r^{00} _a $。我们获得了有限生成(不一定是Unipital)环和拓扑环的类似结果。以上结果表明,对上述论文3.5在上述纸张中获得的三角形组的可定义(也是经典)BOHR压缩的简化描述对于所有Unitial Rings都是有效的。 我们分析了许多示例,其中我们计算通过$(\ bar r \ cup \ {1 \})\ cdot(\ bar r,+)^{00} _a $和研究相关方面的步骤数(\ bar r \ cup \ {1 \})\ cdot(\ bar r \}),显示了我们一些主要结果的“最佳性”,并回答了一些自然问题。
We obtain several fundamental results on finite index ideals and additive subgroups of rings as well as on model-theoretic connected components of rings, which concern generating in finitely many steps inside additive groups of rings. Let $R$ be any ring equipped with an arbitrary additional first order structure, and $A$ a set of parameters. We show that whenever $H$ is an $A$-definable, finite index subgroup of $(R,+)$, then $H+RH$ contains an $A$-definable, two-sided ideal of finite index. As a corollary, we positively answer Question 3.9 of [Bohr compactifications of groups and rings, J. Gismatullin, G. Jagiella and K. Krupiński]: if $R$ is unital, then $(\bar R,+)^{00}_A + \bar R \cdot (\bar R,+)^{00}_A + \bar R \cdot (\bar R,+)^{00}_A = \bar R^{00}_A$, where $\bar R \succ R$ is a sufficiently saturated elementary extension of $R$, and $(\bar R,+)^{00}_A$ [resp. $\bar R^{00}_A$] is the smallest $A$-type-definable, bounded index additive subgroup [resp. ideal] of $\bar R$. This implies that $\bar R^{00}_A=\bar R^{000}_A$, where $\bar R^{000}_A$ is the smallest invariant over $A$, bounded index ideal of $\bar R$. If $R$ is of finite characteristic (not necessarily unital), we get a sharper result: $(\bar R,+)^{00}_A + \bar R \cdot (\bar R,+)^{00}_A = \bar R^{00}_A$. We obtain similar results for finitely generated (not necessarily unital) rings and for topological rings. The above results imply that the simplified descriptions of the definable (so also classical) Bohr compactifications of triangular groups over unital rings obtained in Corollary 3.5 of the aforementioned paper are valid for all unital rings. We analyze many examples, where we compute the number of steps needed to generate a group by $(\bar R \cup \{1\}) \cdot (\bar R,+)^{00}_A$ and study related aspects, showing "optimality" of some of our main results and answering some natural questions.