论文标题
计算曲线的包装
Computing The Packedness of Curves
论文作者
论文摘要
$ n $顶点的多边形曲线$ p $是$ c $包装的,如果曲线边缘的零件的长度总和在半径$ r $的任何磁盘中最多都是$ cr $,则对于任何$ r> 0 $。同样,可以为给定形状的任何缩放定义$ c $包装的概念。 假设$ l $是$ p $的直径,$δ$是$ p $的分离边缘上点之间的最小距离,我们显示现有$ o(\ frac {\ frac {\ log log(l/δ)}εn^3)$ time time time Algorithm为$ 1+ε$ -Approximation algorximation Algorithm。这些算法的大量并行版本以$ o(\ log(l/δ))$ roughs运行。我们改善现有$ o(((\ frac {n} {ε^3})^{\ frac 4 3} \ polylog \ fracnε)$ time $(6+ε)$ - 近似算法通过提供$(4+ε)$(4+ε)$ - 近似$ o(n(4+ε)) \ frac {1}ε)+\ frac {n}ε)$ time算法和现有的$ o(n^2)$ o(n^2)$ 2 $ 2 $ 2 $ - approximation算法改善现有$ O(n^2 \ log n)$ 2 $ 2 $ 2 $ 2 $ -2 $ -2 $ -2 $ -2 $ -2 $ -2 $ -2 $ -APPROXIMATION ALGORITHM。 我们的确切$ c $ - 包装算法需要$ o(n^5)$时间,这是磁盘的第一个精确算法。我们使用$α$ -FAT形状而不是磁盘显示为近似值增加一个因子$α^2 $。 我们还提供了用于计算查询磁盘内曲线长度的数据结构。它具有$ o(n^6 \ log n)$构造时间,使用$ o(n^6)$ space,并且具有查询时间$ o(\ log n+k)$,其中$ k $是具有查询形状的相交段的数量。我们还为相对$ c $包的相对$ o(1)$ rounds提供了一种平行的算法。
A polygonal curve $P$ with $n$ vertices is $c$-packed, if the sum of the lengths of the parts of the edges of the curve that are inside any disk of radius $r$ is at most $cr$, for any $r>0$. Similarly, the concept of $c$-packedness can be defined for any scaling of a given shape. Assuming $L$ is the diameter of $P$ and $δ$ is the minimum distance between points on disjoint edges of $P$, we show the approximation factor of the existing $O(\frac{\log (L/δ)}εn^3)$ time algorithm is $1+ε$-approximation algorithm. The massively parallel versions of these algorithms run in $O(\log (L/δ))$ rounds. We improve the existing $O((\frac{n}{ε^3})^{\frac 4 3}\polylog \frac n ε)$ time $(6+ε)$-approximation algorithm by providing a $(4+ε)$-approximation $O(n(\log^2 n)(\log^2 \frac{1}ε)+\frac{n}ε)$ time algorithm, and the existing $O(n^2)$ time $2$-approximation algorithm improving the existing $O(n^2\log n)$ time $2$-approximation algorithm. Our exact $c$-packedness algorithm takes $O(n^5)$ time, which is the first exact algorithm for disks. We show using $α$-fat shapes instead of disks adds a factor $α^2$ to the approximation. We also give a data-structure for computing the curve-length inside query disks. It has $O(n^6\log n)$ construction time, uses $O(n^6)$ space, and has query time $O(\log n+k)$, where $k$ is the number of intersected segments with the query shape. We also give a massively parallel algorithm for relative $c$-packedness with $O(1)$ rounds.