论文标题

改善深层生成模型的公平性而无需再培训

Improving the Fairness of Deep Generative Models without Retraining

论文作者

Tan, Shuhan, Shen, Yujun, Zhou, Bolei

论文摘要

通过学习观察到的数据的基本分布,生成的对抗网络(GAN)提前综合了面对综合。尽管面孔产生了高质量的面孔,但由于图像生成过程有偏见,一些少数群体很少是从训练有素的模型中产生的。为了研究这个问题,我们首先就预训练的面部合成模型进行了实证研究。我们观察到,训练GAN模型不仅具有训练数据中的偏见,而且在图像生成过程中会在某种程度上放大它们。为了进一步提高图像产生的公平性,我们提出了一种可解释的基线方法,以平衡输出面部属性而无需重新训练。所提出的方法将潜在空间中可解释的语义分布转移,以使图像产生更加平衡,同时保留样本多样性。除了产生有关特定属性(例如种族,性别等)的更平衡的数据外,我们的方法还可以在一次处理多个属性并合成细粒子组的样本时可以推广。我们进一步显示了从GAN采样的平衡数据的积极适用性,以量化其他面部识别系统中的偏见,例如商业面部属性分类器和面部超分辨率算法。

Generative Adversarial Networks (GANs) advance face synthesis through learning the underlying distribution of observed data. Despite the high-quality generated faces, some minority groups can be rarely generated from the trained models due to a biased image generation process. To study the issue, we first conduct an empirical study on a pre-trained face synthesis model. We observe that after training the GAN model not only carries the biases in the training data but also amplifies them to some degree in the image generation process. To further improve the fairness of image generation, we propose an interpretable baseline method to balance the output facial attributes without retraining. The proposed method shifts the interpretable semantic distribution in the latent space for a more balanced image generation while preserving the sample diversity. Besides producing more balanced data regarding a particular attribute (e.g., race, gender, etc.), our method is generalizable to handle more than one attribute at a time and synthesize samples of fine-grained subgroups. We further show the positive applicability of the balanced data sampled from GANs to quantify the biases in other face recognition systems, like commercial face attribute classifiers and face super-resolution algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源