论文标题

带有三元基序场的时间序列异常检测,并在心房颤动中应用ECG分类

Anomaly Detection in Time Series with Triadic Motif Fields and Application in Atrial Fibrillation ECG Classification

论文作者

Zhang, Yadong, Chen, Xin

论文摘要

在时间序列分析中,时间序列图案和时间序列的顺序模式可以揭示一般的时间模式和动态特征。三合会基序场(TMF)是一种基于三合会时间序列基序的简单有效的时间序列图像编码方法。心电图(ECG)信号是广泛用于诊断各种心脏异常的时间序列数据。 TMF图像包含表征正常和心房颤动(AF)ECG信号的特征。考虑到ECG信号的准周期性特征,可以通过传输学习预训练的卷积神经网络(CNN)模型从TMF图像中提取动态特征。借助提取的特征,可以应用简单的分类器,例如多层感知器(MLP),逻辑回归和随机森林,可用于准确的异常检测。借助Physionet挑战2017数据库的测试数据集,具有VGG16传输学习模型和MLP分类器的TMF分类模型以95.50%的ROC-AUC和88.43%的F1分数在AF分类中展示了最佳性能。此外,TMF分类模型可以高精度识别测试数据集中的AF患者。从TMF图像中提取的特征向量显示出具有T-Distribed随机邻居嵌入技术的明确的患者聚类。最重要的是,TMF分类模型具有很好的临床解释性。通过对称梯度加权类激活映射揭示的模式在BEAT和节奏水平上具有明确的临床解释。

In the time-series analysis, the time series motifs and the order patterns in time series can reveal general temporal patterns and dynamic features. Triadic Motif Field (TMF) is a simple and effective time-series image encoding method based on triadic time series motifs. Electrocardiography (ECG) signals are time-series data widely used to diagnose various cardiac anomalies. The TMF images contain the features characterizing the normal and Atrial Fibrillation (AF) ECG signals. Considering the quasi-periodic characteristics of ECG signals, the dynamic features can be extracted from the TMF images with the transfer learning pre-trained convolutional neural network (CNN) models. With the extracted features, the simple classifiers, such as the Multi-Layer Perceptron (MLP), the logistic regression, and the random forest, can be applied for accurate anomaly detection. With the test dataset of the PhysioNet Challenge 2017 database, the TMF classification model with the VGG16 transfer learning model and MLP classifier demonstrates the best performance with the 95.50% ROC-AUC and 88.43% F1 score in the AF classification. Besides, the TMF classification model can identify AF patients in the test dataset with high precision. The feature vectors extracted from the TMF images show clear patient-wise clustering with the t-distributed Stochastic Neighbor Embedding technique. Above all, the TMF classification model has very good clinical interpretability. The patterns revealed by symmetrized Gradient-weighted Class Activation Mapping have a clear clinical interpretation at the beat and rhythm levels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源