论文标题

张量三角类别之间的提升(CO)分层

Lifting (co)stratifications between tensor triangulated categories

论文作者

Shaul, Liran, Williamson, Jordan

论文摘要

我们提供了分层和特性的必要条件,以沿着保留的张张量的$ r $ r $ - 线性函数下降,$ r $ linear-linear-linear-linear tensor tensor-triangualder类别是由其张量单位严格地压实产生的。然后,我们将这些结果应用于非阳性的交换DG环和结缔环光谱。特别是,这给出了(CO)本地化子类别的支持理论分类,以及具有有限幅度的非阳性交换性DG-RIN的衍生类别的紧凑对象的厚子类别,并为最终与最终的Coconnective衍生方案相关的空间提供了正式的合理性。对于非阳性的交换性DG-RING $ A $,我们还研究了$ \ Mathsf {d}(a)$中的某些有限条件(例如,代理 - 符号)是否可以简化为更好理解的类别$ \ MATHSF {d}(d}(d}(h^0a)$)中的问题。

We give necessary and sufficient conditions for stratification and costratification to descend along a coproduct preserving, tensor-exact $R$-linear functor between $R$-linear tensor-triangulated categories which are rigidly-compactly generated by their tensor units. We then apply these results to non-positive commutative DG-rings and connective ring spectra. In particular, this gives a support-theoretic classification of (co)localizing subcategories, and thick subcategories of compact objects of the derived category of a non-positive commutative DG-ring with finite amplitude, and provides a formal justification for the principle that the space associated to an eventually coconnective derived scheme is its underlying classical scheme. For a non-positive commutative DG-ring $A$, we also investigate whether certain finiteness conditions in $\mathsf{D}(A)$ (for example, proxy-smallness) can be reduced to questions in the better understood category $\mathsf{D}(H^0A)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源