论文标题
内部夸克对称性和颜色su(3)与Z_3级的Lorentz代数纠结
Internal quark symmetries and colour SU(3) entangled with Z_3-graded Lorentz algebra
论文作者
论文摘要
在当前版本的QCD中,夸克由普通的狄拉克场描述,在以下内部对称多重上进行了组织:$ su(3)$ color,$ su(2)$(2)$ tave和损坏的$ su(3)$提供家庭三胞胎。 \ \ noindent在本文中,我们认为内部和外部和外部(即时空)对称性至少在颜色领域纠缠在一起,以便以提供所有内部夸克的自由度的方式引入Spinorial Quark字段,这些自由度出现在标准模型中。因为$ su(3)$ color代数赋予了天然$ Z_3 $的离散自动形态,因此为了引入纠缠$ Z_3 $的lorentz和Poincaré代数的$ Z_3 $ graded版本及其实现。夸克的颜色多重组由$ 12 $ - 组件的彩色dirac方程式描述,其中$ z_3 $ graded of-graded of asses(一个是真实的和一对Lee-Wick Complect conjugate对)。我们认为,标准模型中的所有夸克都可以由$ 72 $ -COMPONENT MASTER QUARK SEXTET($ 12 $ -COMPONENT COLORED DIRAC字段)描述。
In the current version of QCD the quarks are described by ordinary Dirac fields, organized in the following internal symmetry multiplets: the $SU(3)$ colour, the $SU(2)$ flavour, and broken $SU(3)$ providing the family triplets. \noindent In this paper we argue that internal and external (i.e. space-time) symmetries are entangled at least in the colour sector in order to introduce the spinorial quark fields in a way providing all the internal quark's degrees of freedom which do appear in the Standard Model. Because the $SU(3)$ colour algebra is endowed with natural $Z_3$-graded discrete automorphisms, in order to introduce entanglement the $Z_3$-graded version of Lorentz and Poincaré algebras with their realizations are considered. The colour multiplets of quarks are described by $12$-component colour Dirac equations, with a $Z_3$-graded triplet of masses (one real and a Lee-Wick complex conjugate pair). We argue that all quarks in the Standard Model can be described by the $72$-component master quark sextet of $12$-component coloured Dirac fields.