论文标题

通过元学习者进行冷启动的顺序推荐

Cold-start Sequential Recommendation via Meta Learner

论文作者

Zheng, Yujia, Liu, Siyi, Li, Zekun, Wu, Shu

论文摘要

本文探讨了在顺序建议中探讨元学习,以减轻项目冷启动问题。顺序推荐旨在根据历史行为序列捕获用户的动态偏好,并成为大多数在线推荐方案的关键组成部分。但是,大多数以前的方法在推荐冷启动项目时遇到困难,在这些情况下很普遍。由于通常在连续推荐任务的设置中没有侧面信息,因此仅当只有用户 - 项目交互时,就无法应用以前的冷启动方法。因此,我们提出了一个基于元学习的冷启动顺序推荐框架,即Mecos,以减轻顺序建议中的项目冷启动问题。这项任务是非平凡的,因为它针对新颖而充满挑战的背景下的重要问题。 MECO有效地从有限的交互中提取用户偏好,并学会将目标冷启动项目与潜在用户匹配。此外,我们的框架可以与基于神经网络的模型无痛地集成。在三个现实世界数据集上进行的广泛实验验证了MECO的优势,而HR@10比最先进的基线方法的平均改善高达99%,91%和70%。

This paper explores meta-learning in sequential recommendation to alleviate the item cold-start problem. Sequential recommendation aims to capture user's dynamic preferences based on historical behavior sequences and acts as a key component of most online recommendation scenarios. However, most previous methods have trouble recommending cold-start items, which are prevalent in those scenarios. As there is generally no side information in the setting of sequential recommendation task, previous cold-start methods could not be applied when only user-item interactions are available. Thus, we propose a Meta-learning-based Cold-Start Sequential Recommendation Framework, namely Mecos, to mitigate the item cold-start problem in sequential recommendation. This task is non-trivial as it targets at an important problem in a novel and challenging context. Mecos effectively extracts user preference from limited interactions and learns to match the target cold-start item with the potential user. Besides, our framework can be painlessly integrated with neural network-based models. Extensive experiments conducted on three real-world datasets verify the superiority of Mecos, with the average improvement up to 99%, 91%, and 70% in HR@10 over state-of-the-art baseline methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源