论文标题

$ \ mathit {f(r)} $引力理论中的非平凡黑洞解决方案

Non-trivial black hole solutions in $\mathit{f(R)}$ gravitational theory

论文作者

Nashed, G. G. L., Nojiri, S.

论文摘要

最近的观察结果表明,在强大的制度中,一般相对论(GR)无效。 $ \ mathit {f(r)} $重力,其中$ \ mathit {r} $是RICCI标量,被认为是能够治愈常规一般相对性中出现异常的好候选者之一。在这个领域,我们将$ \ Mathit {f(r)} $重力的运动方程式应用于带有两个未知功能的球面对称时空,并得出了原始的黑洞(BH)溶液,而无需对RICCI量表以及$ \ Mathit {f(r)} $ GREAT的形式构成任何约束。这些解决方案取决于卷积函数,并且偏离了爱因斯坦GR的Schwarzschild溶液。这些溶液的特征是系统的重力质量和渐近形式的卷积函数提供了额外的术语,这些术语使这种BHS与GR不同。另外,我们表明,这些额外的术语使不变的奇异性比GR BH弱得多。我们使用热力学趋势分析了此类BHS,并显示了它们与热力学中众所周知的量的一致性,例如鹰辐射,熵和准本地能量。我们还表明,我们的BH解决方案满足了热力学的第一定律。此外,我们使用奇数模式研究了稳定性分析,并表明所有派生的BHS都是稳定的,并且具有等于一个的径向速度。最后,使用大地偏差,我们得出了这些BHS的稳定性条件。

Recent observation shows that general relativity (GR) is not valid in the strong regime. $\mathit{f(R)}$ gravity where $\mathit{R}$ is the Ricci scalar, is regarded to be one of good candidates able to cure the anomalies appeared in the conventional general relativity. In this realm, we apply the equation of motions of $\mathit{f(R)}$ gravity to a spherically symmetric spacetime with two unknown functions and derive original black hole (BH) solutions without any constrains on the Ricci scalar as well as on the form of $\mathit{f(R)}$ gravity. Those solutions depend on a convolution function and are deviating from the Schwarzschild solution of the Einstein GR. These solutions are characterized by the gravitational mass of the system and the convolution function that in the asymptotic form gives extra terms that are responsible to make such BHs different from GR. Also, we show that these extra terms make the singularities of the invariants much weaker than those of the GR BH. We analyze such BHs using the trend of thermodynamics and show their consistency with the well known quantities in thermodynamics like the Hawking radiation, entropy and quasi-local energy. We also show that our BH solutions satisfy the first law of thermodynamics. Moreover, we study the stability analysis using the odd-type mode and shows that all the derived BHs are stable and have radial speed equal to one. Finally, using the geodesic deviations we derive the stability conditions of these BHs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源