论文标题

自适应腿部运动的多专家学习

Multi-expert learning of adaptive legged locomotion

论文作者

Yang, Chuanyu, Yuan, Kai, Zhu, Qiuguo, Yu, Wanming, Li, Zhibin

论文摘要

实现多功能机器人运动需要运动技能,以适应以前看不见的情况。我们提出了一个多专家学习体系结构(MELA),该体系结构学会从一组代表性的专家技能中产生适应性技能。在培训期间,Mela首先是由一组独特的预训练专家初始化的,每个专家都在一个不同的深神经网络(DNN)中。然后,通过使用门控神经网络(GNN)学习这些DNN的组合,Mela可以在各种运动模式下获得更多专业的专家和过渡技能。在运行时,Mela不断融合多个DNN,并动态合成新的DNN,以产生适应性的行为,以响应不断变化的情况。这种方法利用了受过训练的专家技能的优势以及在不断变化的任务期间产生响应式运动技能的自适应政策的快速在线综合。使用统一的Mela框架,我们在一个真正的四倍的机器人上展示了成功的多技能运动,该机器人进行了连贯的小跑,转向和跌倒自动恢复,并展示了可以适应不见了的情景的多专家学习生成行为的优点。

Achieving versatile robot locomotion requires motor skills which can adapt to previously unseen situations. We propose a Multi-Expert Learning Architecture (MELA) that learns to generate adaptive skills from a group of representative expert skills. During training, MELA is first initialised by a distinct set of pre-trained experts, each in a separate deep neural network (DNN). Then by learning the combination of these DNNs using a Gating Neural Network (GNN), MELA can acquire more specialised experts and transitional skills across various locomotion modes. During runtime, MELA constantly blends multiple DNNs and dynamically synthesises a new DNN to produce adaptive behaviours in response to changing situations. This approach leverages the advantages of trained expert skills and the fast online synthesis of adaptive policies to generate responsive motor skills during the changing tasks. Using a unified MELA framework, we demonstrated successful multi-skill locomotion on a real quadruped robot that performed coherent trotting, steering, and fall recovery autonomously, and showed the merit of multi-expert learning generating behaviours which can adapt to unseen scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源