论文标题

混合分析和机器学习的Baryonic属性插入银河系暗物质光环

Hybrid analytic and machine-learned baryonic property insertion into galactic dark matter haloes

论文作者

Moews, Ben, Davé, Romeel, Mitra, Sourav, Hassan, Sultan, Cui, Weiguang

论文摘要

虽然仅依赖重力效应的宇宙暗物质模拟却相当快地计算,但模拟星系中的重体性能需要复杂的流体动力模拟,这些模拟在计算上的运行成本高昂。我们探索了平衡模型的扩展版本的合并,这是一种分析形式主义,描述了星系的恒星,气体和金属含量的演变,并将其与机器学习框架相关。这样一来,我们能够恢复比单独进行分析形式主义所能提供的更多的性能,从而创建了一个高速流体动力模拟模拟器,该模拟器在具有Baryonic属性的N体性模拟中填充了银河系暗物质光环。尽管到达准确性和这种方法所提供的速度优势之间存在权衡取舍,但我们的结果优于仅使用机器学习的方法,用于一部分男性属性。我们证明,这种新型混合系统可以通过在合理的程度上模仿完整的流体动力套件的特性,并讨论混合动力与机器学习框架的优点和缺点,从而可以快速完成仅暗物质信息。通过这样做,我们提供了宇宙学中常见的模拟的加速。

While cosmological dark matter-only simulations relying solely on gravitational effects are comparably fast to compute, baryonic properties in simulated galaxies require complex hydrodynamic simulations that are computationally costly to run. We explore the merging of an extended version of the equilibrium model, an analytic formalism describing the evolution of the stellar, gas, and metal content of galaxies, into a machine learning framework. In doing so, we are able to recover more properties than the analytic formalism alone can provide, creating a high-speed hydrodynamic simulation emulator that populates galactic dark matter haloes in N-body simulations with baryonic properties. While there exists a trade-off between the reached accuracy and the speed advantage this approach offers, our results outperform an approach using only machine learning for a subset of baryonic properties. We demonstrate that this novel hybrid system enables the fast completion of dark matter-only information by mimicking the properties of a full hydrodynamic suite to a reasonable degree, and discuss the advantages and disadvantages of hybrid versus machine learning-only frameworks. In doing so, we offer an acceleration of commonly deployed simulations in cosmology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源