论文标题
二进制系统中绑定对象的三体捕获,弹出和人口统计
Three-body capture, ejection, and the demographics of bound objects in binary systems
论文作者
论文摘要
我们研究二进制系统任意速度的光对象的捕获。扩展了捕获太阳系中彗星的结果,我们开发了捕获横截面的简单几何表征,直接导致捕获对象的轨道参数的分布。我们使用相同的框架在弹出之前研究这些结合轨道的寿命,并发现简化版本的Öpik-arnold方法很容易产生与数值实验非常吻合的弹出率的封闭式估计。如果没有任何详细的假设,我们的结果就表现出了近距离相遇的特征,从而导致捕获和弹出。作为结果的应用,我们证明了二进制系统中捕获的暗物质颗粒的平衡群体的估计。
We study the capture of light objects of arbitrary velocity by binary systems. Extending results for the capture of comets in the solar system, we develop a simple geometric characterization of the capture cross section, leading directly to the distribution of orbital parameters of captured objects. We use the same framework to study the lifetimes of these bound orbits prior to ejection, and find that a simplified version of the Öpik--Arnold approach readily yields a closed-form estimate for the ejection rate that agrees well with numerical experiments. Without any detailed-balance assumptions, our results make manifest the characteristics of close encounters leading to capture and ejection. As an application of our results, we demonstrate the estimation of the equilibrium population of captured dark matter particles in a binary system.