论文标题
以主题为导向的口语对话摘要,用于使用显着性主题建模的客户服务
Topic-Oriented Spoken Dialogue Summarization for Customer Service with Saliency-Aware Topic Modeling
论文作者
论文摘要
在客户服务系统中,对话摘要可以通过自动为长期口语对话创建摘要来提高服务效率,在该对话中,客户和代理商试图解决有关特定主题的问题。在这项工作中,我们关注面向主题的对话摘要,该摘要产生了高度抽象的摘要,从而保留对话中的主要思想。在语音对话中,大量的对话噪声和常见的语义可能会掩盖潜在的信息内容,从而使一般的主题建模方法难以应用。此外,对于客户服务,特定于角色的信息很重要,并且是摘要中必不可少的一部分。为了有效地在对话中执行主题建模并捕获多角色信息,在这项工作中,我们提出了一个新颖的主题激烈的两阶段对话摘要(TDS),并与显着性的神经主题模型(SATM)共同提出了针对客户服务对话的显着性神经主题模型(SATM)。对现实世界中国客户服务数据集的全面研究表明,我们方法的优势与几个强大的基线相比。
In a customer service system, dialogue summarization can boost service efficiency by automatically creating summaries for long spoken dialogues in which customers and agents try to address issues about specific topics. In this work, we focus on topic-oriented dialogue summarization, which generates highly abstractive summaries that preserve the main ideas from dialogues. In spoken dialogues, abundant dialogue noise and common semantics could obscure the underlying informative content, making the general topic modeling approaches difficult to apply. In addition, for customer service, role-specific information matters and is an indispensable part of a summary. To effectively perform topic modeling on dialogues and capture multi-role information, in this work we propose a novel topic-augmented two-stage dialogue summarizer (TDS) jointly with a saliency-aware neural topic model (SATM) for topic-oriented summarization of customer service dialogues. Comprehensive studies on a real-world Chinese customer service dataset demonstrated the superiority of our method against several strong baselines.