论文标题

结合相似性和对抗性学习以产生视觉说明:应用医学图像分类

Combining Similarity and Adversarial Learning to Generate Visual Explanation: Application to Medical Image Classification

论文作者

Charachon, Martin, Hudelot, Céline, Cournède, Paul-Henry, Ruppli, Camille, Ardon, Roberto

论文摘要

在敏感领域(例如医学成像)中,解释黑盒分类器的决策至关重要,因为临床医生需要采用临床医生的信心。已经提出了各种解释方法,其中基于扰动的方法非常有前途。在这类方法中,我们利用学习框架来生成我们的视觉解释方法。从给定的分类器中,我们训练两个发电机从输入图像产生所谓的类似和对抗性图像。相似的图像应分类为输入图像,而对抗性则不得。视觉说明是作为这两个生成图像之间的差异构建的。使用文献中的指标,我们的方法优于最先进的方法。所提出的方法是模型不合时宜的,在预测时计算负担低。因此,它适用于实时系统。最后,我们表明,适用于原始图像的随机几何增强起着正则化作用,可改善以前提出的解释方法。我们在大胸部X射线数据库上验证方法。

Explaining decisions of black-box classifiers is paramount in sensitive domains such as medical imaging since clinicians confidence is necessary for adoption. Various explanation approaches have been proposed, among which perturbation based approaches are very promising. Within this class of methods, we leverage a learning framework to produce our visual explanations method. From a given classifier, we train two generators to produce from an input image the so called similar and adversarial images. The similar image shall be classified as the input image whereas the adversarial shall not. Visual explanation is built as the difference between these two generated images. Using metrics from the literature, our method outperforms state-of-the-art approaches. The proposed approach is model-agnostic and has a low computation burden at prediction time. Thus, it is adapted for real-time systems. Finally, we show that random geometric augmentations applied to the original image play a regularization role that improves several previously proposed explanation methods. We validate our approach on a large chest X-ray database.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源