论文标题

基于不精确的ADMM的联合元学习,用于快速,持续的边缘学习

Inexact-ADMM Based Federated Meta-Learning for Fast and Continual Edge Learning

论文作者

Yue, Sheng, Ren, Ju, Xin, Jiang, Lin, Sen, Zhang, Junshan

论文摘要

为了满足许多物联网应用程序的性能,安全性和延迟的要求,必须在网络边缘立即在此处做出智能决策。但是,限制的资源和有限的本地数据量对Edge AI的发展构成了重大挑战。为了克服这些挑战,我们探索了能够利用以前任务的知识转移的连续边缘学习。为了实现快速而持续的边缘学习,我们提出了一个平台辅助的联合元学习体系结构,在该体系结构中,Edge Nodes合作学习了元模型,并在先前任务的知识转移的帮助下。边缘学习问题被视为正规化优化问题,从以前的任务中学习的有价值的知识被提取为正规化。然后,我们设计了一种基于ADMM的联合元学习算法,即ADMM-FEDMETA,ADMM提供了一种自然机制,可以将原始问题分解为许多子问题,这些子问题可以在跨边缘节点和平台并行解决。此外,采用了一种不精确的ADMM方法,其中通过线性近似和Hessian估计来“解决”子问题,以将每回合的计算成本降低到$ \ MATHCAL {O}(n)$。我们就一般的非convex案例的融合属性,快速适应性绩效和先验知识转移的遗忘效果,对ADMM-FEDMETA进行了全面分析。广泛的实验研究证明了ADMM-FEDMETA的有效性和效率,并证明它显着优于现有基准。

In order to meet the requirements for performance, safety, and latency in many IoT applications, intelligent decisions must be made right here right now at the network edge. However, the constrained resources and limited local data amount pose significant challenges to the development of edge AI. To overcome these challenges, we explore continual edge learning capable of leveraging the knowledge transfer from previous tasks. Aiming to achieve fast and continual edge learning, we propose a platform-aided federated meta-learning architecture where edge nodes collaboratively learn a meta-model, aided by the knowledge transfer from prior tasks. The edge learning problem is cast as a regularized optimization problem, where the valuable knowledge learned from previous tasks is extracted as regularization. Then, we devise an ADMM based federated meta-learning algorithm, namely ADMM-FedMeta, where ADMM offers a natural mechanism to decompose the original problem into many subproblems which can be solved in parallel across edge nodes and the platform. Further, a variant of inexact-ADMM method is employed where the subproblems are `solved' via linear approximation as well as Hessian estimation to reduce the computational cost per round to $\mathcal{O}(n)$. We provide a comprehensive analysis of ADMM-FedMeta, in terms of the convergence properties, the rapid adaptation performance, and the forgetting effect of prior knowledge transfer, for the general non-convex case. Extensive experimental studies demonstrate the effectiveness and efficiency of ADMM-FedMeta, and showcase that it substantially outperforms the existing baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源