论文标题

关于麦克斯韦型风湿病中无耐硬化的粘弹性模型的注释

A note about hardening-free viscoelastic models in Maxwellian-type rheologies at large strains

论文作者

Davoli, Elisa, Roubíček, Tomáš, Stefanelli, Ulisse

论文摘要

麦克斯韦型在大型菌株下蠕变类型的非弹性效应的流变学模型与非弹性 - 应变梯度理论有关。特别是,我们观察到,存储的能量密度对非弹性应变梯度的依赖性可能导致虚假的硬化效应,从而阻止该模型适应大型非弹性滑动。本文的主要结果是蠕变类型的替代性无弹性模型,其中弹性应变的梯度和塑性应变速率提供了高阶能量贡献,从而阻止了大滑板下的虚假硬化的发作。 Kelvin-Voigt阻尼和Maxwellian蠕变的组合导致了Jeffreys-type流变学模型。通过Faedo-Galerkin近似证明了弱溶液的存在。

Maxwellian-type rheological models of inelastic effects of creep type at large strains are revisited in relation to inelastic-strain gradient theories. In particular, we observe that a dependence of the stored-energy density on inelastic-strain gradients may lead to spurious hardening effects, preventing the model from accommodating large inelastic slips. The main result of this paper is an alternative inelastic model of creep type, where higher-order energy-contribution is provided by the gradients of the elastic strain and of the plastic strain rate, thus preventing the onset of spurious hardening under large slips. The combination of Kelvin-Voigt damping and Maxwellian creep results in a Jeffreys-type rheological model. Existence of weak solutions is proved via a Faedo-Galerkin approximation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源