论文标题
temimagenet训练库和原子能学习模型,用于高精度原子分割,定位,降解和原子分辨率图像的超分辨率处理
TEMImageNet Training Library and AtomSegNet Deep-Learning Models for High-Precision Atom Segmentation, Localization, Denoising, and Super-Resolution Processing of Atomic-Resolution Images
论文作者
论文摘要
原子分析和定位,原子分辨率扫描透射电子显微镜(STEM)图像的降噪和清除,具有较高的精度和鲁棒性是一项艰巨的任务。尽管几种常规的算法具有阈值,边缘检测和聚类,可以在某些预定义的场景中实现合理的性能,但是当背景的干扰强大且无法预测时,它们往往会失败。特别是,对于原子分辨率的茎图像,到目前为止,还没有建立良好的算法,可以在记录的图像中有较大的厚度变化时,足以将所有原子柱细分或检测到所有原子柱。在此,我们报告了一个训练库的开发以及一种可以执行实验图像的强大和精确的原子分割,定位,降解和超分辨率处理的深度学习方法。尽管将模拟图像用作训练数据集,但深度学习模型仍可以自适应实验性的STEM图像,并显示出在挑战性的对比条件下的原子检测和定位表现出色,精度始终优于先进的二维高斯拟合方法。进一步迈出一步,我们将深入学习模型部署到具有图形用户界面的桌面应用程序中,并且该应用程序是免费的和开源的。我们还建立了一个TEM ImageNet项目网站,以便于浏览和下载培训数据。
Atom segmentation and localization, noise reduction and deblurring of atomic-resolution scanning transmission electron microscopy (STEM) images with high precision and robustness is a challenging task. Although several conventional algorithms, such has thresholding, edge detection and clustering, can achieve reasonable performance in some predefined sceneries, they tend to fail when interferences from the background are strong and unpredictable. Particularly, for atomic-resolution STEM images, so far there is no well-established algorithm that is robust enough to segment or detect all atomic columns when there is large thickness variation in a recorded image. Herein, we report the development of a training library and a deep learning method that can perform robust and precise atom segmentation, localization, denoising, and super-resolution processing of experimental images. Despite using simulated images as training datasets, the deep-learning model can self-adapt to experimental STEM images and shows outstanding performance in atom detection and localization in challenging contrast conditions and the precision consistently outperforms the state-of-the-art two-dimensional Gaussian fit method. Taking a step further, we have deployed our deep-learning models to a desktop app with a graphical user interface and the app is free and open-source. We have also built a TEM ImageNet project website for easy browsing and downloading of the training data.