论文标题

自适应多代理电子学习推荐系统

Adaptive Multi-Agent E-Learning Recommender Systems

论文作者

Viswanathan, Nethra

论文摘要

由于可用的教育资源超载,教育推荐系统已成为近年来的必要条件,这使得个人很难手动寻找互联网上所需的资源。电子学习推荐系统简化了根据每个用户的要求从零星的万维网存储库中收集正确的网页和网络文档的繁琐任务,从而增加了需求,从而对研究它们的好奇心。当系统与一组合作代理人一起运行时,使用不同的建议技术从非常富有生产力的时间效率的过程中从非常大的网页中获取少数建议。还需要系统以跟上动态Web环境中用户兴趣和Web资源的不断变化,因此适应性是确定推荐系统效率的重要因素。该论文概述了这种自适应多代理电子学习推荐系统以及用于实施它们的概念。它准确地提供了想要研究此类系统的最先进工作的研究人员所需的所有信息,从而使他能够决定自己的系统的实施概念。

Educational recommender systems have become a necessity in the recent years due to overload of available educational resource which makes it difficult for an individual to manually hunt for the required resource on the internet. E-learning recommender systems simplify the tedious task of gathering the right web pages and web documents from the scattered world wide web repositories according to every users' requirements thus increasing the demand and hence the curiosity to study them. Retrieval of a handful of recommendations from a very huge collection of web pages using different recommendation techniques becomes a productive and time efficient process when the system functions with a set of cooperative agents. The system is also required to keep up with the changing user interests and web resources in the dynamic web environment, and hence adaptivity is an important factor in determining the efficiency of recommender systems. The paper provides an overview of such adaptive multi-agent e-learning recommender systems and the concepts employed to implement them. It precisely provides all the information required by a researcher who wants to study the state-of-the-art work on such systems thus enabling him to decide on the implementation concepts for his own system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源