论文标题
特殊Zeta Mahler功能
Special zeta Mahler functions
论文作者
论文摘要
1969年,I。Bernstein和S. Gelfand引入了一个物体,该对象现在称为Zeta Mahler函数(ZMF,也是Zeta Mahler量),并且与Mahler量度有关。 在这里,我们讨论了laurent多项式$ k +(x_1 + x_1^{ - 1})\ cdots(x_r + x_r^{ - 1})$的ZMF家族,其中$ k $是真实的。我们给出明确的公式,示例并为这些ZMF建立特性,例如Rh型现象。此外,我们探索了与马勒措施的关系。
In 1969, I. Bernstein and S. Gelfand introduced an object, which is now called the zeta Mahler function (ZMF, also zeta Mahler measure) and related to the Mahler measure. Here we discuss a family of ZMFs attached to the Laurent polynomials $k + (x_1 + x_1^{-1}) \cdots (x_r + x_r^{-1})$, where $k$ is real. We give explicit formulae, present examples and establish properties for these ZMFs, such as an RH-type phenomenon. Further, we explore relations with the Mahler measure.