论文标题

节能自旋注射器进入由弹性波驱动的半导体

Energy-efficient spin injector into semiconductors driven by elastic waves

论文作者

Azovtsev, Andrei V., Nikitchenko, Andrei I., Pertsev, Nikolay A.

论文摘要

非磁性半导体中的自旋失衡产生对于许多自旋装置的功能至关重要。旋转喷油器进入半导体的有吸引力的设计是基于从预启动铁磁铁中的自旋泵送,通常是通过微波磁场激发的,导致设备的高功率消耗。在这里,我们从理论上描述了一个自旋注射器,其能量损耗大大降低,其中磁化动力学是通过注射到Ferromagnet-Senemencenductor异质结构中的弹性波激发的。为了证明这种注射器的有效功能,我们对Ni膜和Ni/GaAS双层中的耦合弹性和磁动力学进行了微磁弹性模拟。对于厚的Ni膜,显示单色声波会产生具有相同频率和波长的自旋波,该波长在接近铁磁共振频率的激发频率下在几个微米的距离上传播。与注射声波波长相当的Ni厚度的Ni/GaAS双层的模拟表明,在Ni/GaAs界面上开发了稳态磁化强化进动的发展。这种进动的幅度在Ni厚度的最大值达到弹性波波长的四分之三,这是由分析模型解释的。使用在Ni/GAAS界面上获得的磁化进动的仿真数据,我们评估了泵入GAAS的自旋电流,并通过求解自旋扩散方程来计算其中的自旋积累。然后,由旋转流量和反自旋霍尔效应产生的电信号通过拉普拉斯方程的数值解确定。结果表明,这些交流信号的幅度足够大,可以实验测量,这表明有效的声学驱动的自旋泵入GAAS。

Generation of spin imbalance in nonmagnetic semiconductors is crucial for the functioning of many spintronic devices. An attractive design of spin injectors into semiconductors is based on a spin pumping from a precessing ferromagnet, typically excited by a microwave magnetic field leading to a high power consumption of the device. Here we describe theoretically a spin injector with greatly reduced energy losses, in which the magnetic dynamics is excited by an elastic wave injected into a ferromagnet-semiconductor heterostructure. To demonstrate the efficient functioning of such an injector, we perform micromagnetoelastic simulations of the coupled elastic and magnetic dynamics in Ni films and Ni/GaAs bilayers. For thick Ni films, it is shown that a monochromatic acoustic wave generates a spin wave with the same frequency and wavelength, which propagates over distances of several micrometers at the excitation frequencies close to the frequency of ferromagnetic resonance. The simulations of Ni/GaAs bilayers with Ni thicknesses comparable to the wavelength of the injected acoustic wave demonstrate the development of a steady-state magnetization precession at the Ni/GaAs interface. The amplitude of such a precession has a maximum at Ni thickness amounting to three quarters of the wavelength of the elastic wave, which is explained by an analytical model. Using simulation data obtained for the magnetization precession at the Ni/GaAs interface, we evaluate the spin current pumped into GaAs and calculate the spin accumulation in it by solving the spin diffusion equation. Then the electrical signals resulting from the spin flow and the inverse spin Hall effect are determined via the numerical solution of the Laplace's equation. It is shown that amplitudes of these ac signals are large enough for experimental measurement, which indicates an efficient acoustically driven spin pumping into GaAs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源