论文标题

美国FDA药物批准是持久和多环的:对经济周期,创新动态和国家政策的见解

United States FDA drug approvals are persistent and polycyclic: Insights into economic cycles, innovation dynamics, and national policy

论文作者

Daizadeh, Iraj

论文摘要

阐明外部影响变化(例如经济或政策)对美国药物批准率的影响是一项挑战。在这里,提出了一种新的方法,称为按时间顺序的Hurst指数(CHE),它假设在时间序列数据的动力学数据中潜在的远程记忆的变化可能与此类影响的变化有关。使用每月数量的FDA药物评估与研究中心(CDER)从1939年到2019年作为数据源,证明CHE具有由8年(1939-1947)的停滞期划分的独特的S形结构,一个27年(1947-1974)的出现(1947- 1974年)(1947- 1974年)(1947- 1974年)(1947- 1974年)(时间段)(1974年)(19745年)(19745年)(19745年)(455岁)(455年)(45)(45)(45)(45),2000年3月2日,2000年3月2日,2000年3月2日,2000年3月2日,2000年的时间(1945年),2000年的时间(1994年),2000年的时间为274-220率(1945年)。 (通过小波分析解决)在最新的45年CHE饱和度期间,在17、8和4年中,美国的药物批准一直遵循Juglar-Kuznet中期周期,而kitchin样爆发的过程中,这项工作表明了(1)在经济和/或政策中的变化(例如,在/或策略中)。自1974年以来享受,(2)CHE可能是探索影响时间序列数据影响的有价值的方法,(3)与创新相关的经济周期存在(如通过美国药物批准的代理指标观看)。

It is challenging to elucidate the effects of changes in external influences (such as economic or policy) on the rate of US drug approvals. Here, a novel approach, termed the Chronological Hurst Exponent (CHE), is proposed, which hypothesizes that changes in the long-range memory latent within the dynamics of time series data may be temporally associated with changes in such influences. Using the monthly number the FDA Center for Drug Evaluation and Research (CDER) approvals from 1939 to 2019 as the data source, it is demonstrated that the CHE has a distinct S-shaped structure demarcated by an 8-year (1939-1947) Stagnation Period, a 27-year (1947-1974) Emergent (time-varying Period, and a 45-year (1974-2019) Saturation Period. Further, dominant periodicities (resolved via wavelet analyses) are identified during the most recent 45-year CHE Saturation Period at 17, 8 and 4 years; thus, US drug approvals have been following a Juglar-Kuznet mid-term cycle with Kitchin-like bursts. As discussed, this work suggests that (1) changes in extrinsic factors (e.g., of economic and/or policy origin ) during the Emergent Period may have led to persistent growth in US drug approvals enjoyed since 1974, (2) the CHE may be a valued method to explore influences on time series data, and (3) innovation-related economic cycles exist (as viewed via the proxy metric of US drug approvals).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源