论文标题
无穷小的Zariski封闭积极表示
Infinitesimal Zariski closures of positive representations
论文作者
论文摘要
我们对Zariski闭合的(半简单部分)的(半简单部分)的代数分类为一个分裂简单的实地谎言组的离散子组,其极限集是最小的,因此完整标志空间中的极限集包含一个正面三重的标志(如在lusztig中)。然后,我们将结果应用于吉查德(Guichard)将希金斯(Hitchin)表示的zariski封闭式分类的新证明中,以$ psl_d(\ mathbb {r})。$
We classify the (semi-simple parts of the) Lie algebra of the Zariski closure of a discrete subgroup of a split simple real-algebraic Lie group, whose limit sets are minimal and such that the limit set in the space of full flags contains a positive triple of flags (as in Lusztig). We then apply our result to obtain a new proof of Guichard's classification of Zariski closures of Hitchin representations into $PSL_d(\mathbb{R}).$