论文标题

优化在大风环境中污染传感器的放置

Optimising Placement of Pollution Sensors in Windy Environments

论文作者

Hellan, Sigrid Passano, Lucas, Christopher G., Goddard, Nigel H.

论文摘要

空气污染是世界上死亡率最重要的原因之一。监测空气污染对于了解健康与污染物之间的联系并确定干预区域很有用。这种监视很昂贵,因此重要的是要尽可能有效地放置传感器。事实证明,贝叶斯优化对选择传感器位置有用,但通常依赖于忽略空气污染统计结构的内核功能,例如污染趋势在盛行的风向上传播。我们描述了两个新的风能内核,并研究了它们在使用贝叶斯优化的最大污染位置积极学习位置的任务。

Air pollution is one of the most important causes of mortality in the world. Monitoring air pollution is useful to learn more about the link between health and pollutants, and to identify areas for intervention. Such monitoring is expensive, so it is important to place sensors as efficiently as possible. Bayesian optimisation has proven useful in choosing sensor locations, but typically relies on kernel functions that neglect the statistical structure of air pollution, such as the tendency of pollution to propagate in the prevailing wind direction. We describe two new wind-informed kernels and investigate their advantage for the task of actively learning locations of maximum pollution using Bayesian optimisation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源