论文标题
Riordan群体在有限场上的代数和拓扑特性
Algebraic and topological properties of Riordan groups over finite fields
论文作者
论文摘要
在本文中,我们研究了Riordan群体在有限领域的代数和拓扑特性。这些组提供了具有有限宽度的拓扑结构生成的新型涂鸦基团的新类别。我们还介绍了Riordan组的索引 - 群,最后我们准确地展示了这些组的Hausdorff尺寸范围。后者的结果类似于诺丁汉组的Barnea和Klopsch的工作。
In this paper, we investigate algebraic and topological properties of the Riordan groups over finite fields. These groups provide a new class of topologically finitely generated profinite groups with finite width. We also introduce, characterize index-subgroups of our Riordan groups, and finally we show exactly the range of Hausdorff dimensions of these groups. The latter results are analogous to the work of Barnea and Klopsch for the Nottingham groups.