论文标题

线性中性微分方程的解决方案估计和稳定性测试

Solution estimates and stability tests for linear neutral differential equations

论文作者

Berezansky, Leonid, Braverman, Elena

论文摘要

获得标量中性微分方程$$ \ dot {x}(t)-a(t)-a(t)\ dot {x}(g(t))= - \ sum_ {k = 1}^m b_k(t)x(t)x(t)x(h_kk(t)),$ $ nouthiental估算的溶液。还获得了非均匀中性方程溶液的估计值,它们在每个有限段中都是有效的,因此描述了渐近行为和瞬态行为。对于中性微分方程,首次获得了指数估计。系数和延迟都被认为是可测量的,不一定是连续的功能。

Explicit exponential stability tests are obtained for the scalar neutral differential equation $$ \dot{x}(t)-a(t)\dot{x}(g(t))=-\sum_{k=1}^m b_k(t)x(h_k(t)), $$ together with exponential estimates for its solutions. Estimates for solutions of a non-homogeneous neutral equation are also obtained, they are valid on every finite segment, thus describing both asymptotic and transient behavior. For neutral differential equations, exponential estimates are obtained here for the first time. Both the coefficients and the delays are assumed to be measurable, not necessarily continuous functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源