论文标题

太阳风变异性对PULSAR计时的影响

The impact of Solar wind variability on pulsar timing

论文作者

Tiburzi, C., Shaifullah, G. M., Bassa, C. G., Zucca, P., Verbiest, J. P. W., Porayko, N. K., van der Wateren, E., Fallows, R. A., Main, R. A., Janssen, G. H., Anderson, J. M., Nielsen, A-. S. Bak, Donner, J. Y., Keane, E. F., Künsemöller, J., Osłowski, S., Grießmeier, J-. M., Serylak, M., Brüggen, M., Ciardi, B., Dettmar, R. -J., Hoeft, M., Kramer, M., Mann, G., Vocks, C.

论文摘要

高精度的脉冲星时间需要准确的校正无线电波的分散延迟,该延迟通过分散度量(DM)进行了参数,特别是如果这些延迟在时间上变化时。在上一篇论文中,我们研究了用于脉冲星时时间的太阳风(SW)模型,以减轻SW每年诱导的DM过量,并发现这些模型不足以用于高精度的PULSAR时机。在这里,我们分析了其他PULSAR数据集,以进一步研究PULSAR定时中当前使用的SW模型的哪些方面,并且可以很容易地改进,并且在定时精度降低的级别上可以缓解哪些方面。我们的目标是验证:a)是否通过具有时间变化的SW的球形模型更好地描述数据,而不是文献中建议的时间不变的幅度,b)是否可以检测到这种模型振幅的时间趋势。我们在低频脉冲星观测上使用脉冲星计时技术来估计DM并量化该值如何随着地球在太阳周围移动而变化。具体而言,我们每周监视DM,以每月观察到14个与Lofar一起在长达6年的时间跨度中进行的脉冲星。我们开发了一种知情的算法,将DM中的星际变化与SW引起的变化分开,并通过广泛的模拟证明了该算法的功能。假设SW密度的球形对称模型,我们为每年观测年的模型得出了该模型的幅度。我们表明,具有时间变化幅度模型的球形模型比具有恒定振幅的球形模型更好,但是两种方法都在样品中许多脉冲星中未验证了显着的SW引起的延迟。发现球形模型的幅度在时间上是可变的,而不是先前建议的。

High-precision pulsar timing requires accurate corrections for dispersive delays of radio waves, parametrized by the dispersion measure (DM), particularly if these delays are variable in time. In a previous paper we studied the Solar-wind (SW) models used in pulsar timing to mitigate the excess of DM annually induced by the SW, and found these to be insufficient for high-precision pulsar timing. Here we analyze additional pulsar datasets to further investigate which aspects of the SW models currently used in pulsar timing can be readily improved, and at what levels of timing precision SW mitigation is possible. Our goals are to verify: a) whether the data are better described by a spherical model of the SW with a time-variable amplitude rather than a time-invariant one as suggested in literature, b) whether a temporal trend of such a model's amplitudes can be detected. We use the pulsar-timing technique on low-frequency pulsar observations to estimate the DM and quantify how this value changes as the Earth moves around the Sun. Specifically, we monitor the DM in weekly to monthly observations of 14 pulsars taken with LOFAR across time spans of up to 6 years. We develop an informed algorithm to separate the interstellar variations in DM from those caused by the SW and demonstrate the functionality of this algorithm with extensive simulations. Assuming a spherically symmetric model for the SW density, we derive the amplitude of this model for each year of observations. We show that a spherical model with time-variable amplitude models the observations better than a spherical model with constant amplitude, but that both approaches leave significant SW induced delays uncorrected in a number of pulsars in the sample. The amplitude of the spherical model is found to be variable in time, as opposed to what has been previously suggested.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源